The effect of ciprofloxacin on doxorubicin cytotoxic activity in the acquired resistance to doxorubicin in DU145 prostate carcinoma cells

Chen J, Chen B, Zou Z, Li W, Zhang Y, Xie J, et al. Costunolide enhances doxorubicin-induced apoptosis in prostate cancer cells via activated mitogen-activated protein kinases and generation of reactive oxygen species. Oncotarget. 2017. https://doi.org/10.18632/oncotarget.22592.

Article  PubMed  PubMed Central  Google Scholar 

Li S, Yuan S, Zhao Q, Wang B, Wang X, Li K. Quercetin enhances chemotherapeutic effect of doxorubicin against human breast cancer cells while reducing toxic side effects of it. Biomed Pharmacother. 2018. https://doi.org/10.1016/j.biopha.2018.02.055.

Article  PubMed  Google Scholar 

Bai T, Liu Y, Li B. LncRNA LOXL1-AS1/miR-let-7a-5p/EGFR-related pathway regulates the doxorubicin resistance of prostate cancer DU-145 cells. IUBMB Life. 2019. https://doi.org/10.1002/iub.2075.

Article  PubMed  Google Scholar 

Tacar O, Sriamornsak P, Dass CR. Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol. 2013. https://doi.org/10.1111/j.2042-7158.2012.01567.x.

Article  PubMed  Google Scholar 

Zahreddine H, Borden K. Mechanisms and insights into drug resistance in cancer. Front Pharmacol. 2013. https://doi.org/10.3389/fphar.2013.00028.

Article  PubMed  PubMed Central  Google Scholar 

Kim S-Y. Cancer energy metabolism: shutting power off cancer factory. Biomol Ther. 2018. https://doi.org/10.4062/biomolther.2017.184.

Article  Google Scholar 

Shahruzaman SH, Fakurazi S, Maniam S. Targeting energy metabolism to eliminate cancer cells. Cancer Manag Res. 2018. https://doi.org/10.2147/CMAR.S167424.

Article  PubMed  PubMed Central  Google Scholar 

Willcocks S, Huse KK, Stabler R, Oyston PC, Scott A, Atkins HS, et al. Genome-wide assessment of antimicrobial tolerance in Yersinia pseudotuberculosis under ciprofloxacin stress. Microb Genomics. 2019. https://doi.org/10.1099/mgen.0.000304.

Article  Google Scholar 

Boerema J-BJ, Dalhoff A, Debruyne FM. Ciprofloxacin distribution in prostatic tissue and fluid following oral administration. Chemotherapy. 1985. https://doi.org/10.1159/000238308.

Article  PubMed  Google Scholar 

Hangas A, Aasumets K, Kekäläinen NJ, Paloheinä M, Pohjoismäki JL, Gerhold JM, et al. Ciprofloxacin impairs mitochondrial DNA replication initiation through inhibition of Topoisomerase 2. Nucleic Acids Res. 2018. https://doi.org/10.1093/nar/gky793.

Article  PubMed  PubMed Central  Google Scholar 

Gürbay A, Hıncal F. Ciprofloxacin-induced glutathione redox status alterations in rat tissues. Drug Chem Toxicol. 2004. https://doi.org/10.1081/dct-120037504.

Article  PubMed  Google Scholar 

Bush NG, Diez-Santos I, Abbott LR, Maxwell A. Quinolones: mechanism, lethality and their contributions to antibiotic resistance. Molecules. 2020. https://doi.org/10.3390/molecules25235662.

Article  PubMed  PubMed Central  Google Scholar 

Aranha O, Grignon R, Fernandes N, McDONNELL TJ, Wood DP, Sarkar FH. Suppression of human prostate cancer cell growth by ciprofloxacin is associated with cell cycle arrest and apoptosis. Int J Oncol. 2003. https://doi.org/10.3892/ijo.22.4.787.

Article  PubMed  Google Scholar 

Yadav V, Talwar P. Repositioning of fluoroquinolones from antibiotic to anti-cancer agents: an underestimated truth. Biomed Pharmacother. 2019. https://doi.org/10.1016/j.biopha.2018.12.119.

Article  PubMed  Google Scholar 

Kloskowski T, Szeliski K, Fekner Z, Rasmus M, Dąbrowski P, Wolska A, et al. Ciprofloxacin and levofloxacin as potential drugs in genitourinary cancer treatment—the effect of dose-response on 2D and 3D cell cultures. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms222111970.

Article  PubMed  PubMed Central  Google Scholar 

Chrzanowska A, Olejarz W, Kubiak-Tomaszewska G, Ciechanowicz AK, Struga M. The effect of fatty acids on ciprofloxacin cytotoxic activity in prostate cancer cell lines—does lipid component enhance anticancer ciprofloxacin potential? Cancers. 2022. https://doi.org/10.3390/cancers14020409.

Article  PubMed  PubMed Central  Google Scholar 

Gupta P, Gao H-L, Ashar YV, Karadkhelkar NM, Yoganathan S, Chen Z-S. Ciprofloxacin enhances the chemosensitivity of cancer cells to ABCB1 substrates. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20020268.

Article  PubMed  PubMed Central  Google Scholar 

Pinto AC, Moreira JN, Simões S. Ciprofloxacin sensitizes hormone-refractory prostate cancer cell lines to doxorubicin and docetaxel treatment on a schedule-dependent manner. Cancer Chemother Pharmacol. 2009. https://doi.org/10.1007/s00280-008-0892-6.

Article  PubMed  Google Scholar 

Park MS, Okochi H, Benet LZ. Is ciprofloxacin a substrate of P-glycoprotein? Arch Drug Inf. 2011. https://doi.org/10.1111/j.1753-5174.2010.00032.x.

Article  PubMed  PubMed Central  Google Scholar 

David-Beabes GL, Overman MJ, Petrofski JA, Campbell PA, de Marzo AM, Nelson WG. Doxorubicin-resistant variants of human prostate cancer cell lines DU 145, PC-3, PPC-1, and TSU-PR1: characterization of biochemical determinants of antineoplastic drug sensitivity. Int J Oncol. 2000. https://doi.org/10.3892/ijo.17.6.1077.

Article  PubMed  Google Scholar 

Langdon SP. Cancer cell culture. Totawa: Humana Press Inc; 2010.

Google Scholar 

Wang W, Wang L, Mizokami A, Shi J, Zou C, Dai J, et al. Down-regulation of E-cadherin enhances prostate cancer chemoresistance via Notch signaling. Chin J Cancer. 2017. https://doi.org/10.1186/s40880-017-0203-x.

Article  PubMed  PubMed Central  Google Scholar 

Munshi A, Hobbs M, Meyn RE. Clonogenic cell survival assay. Totawa: Humana Press Inc; 2005. https://doi.org/10.1385/1-59259-869-2:021.

Book  Google Scholar 

Aldaghi SA, Jalal R. Concentration-dependent dual effects of ciprofloxacin on SB-590885-resistant BRAFV600E A375 melanoma cells. Chem Res Toxicol. 2019. https://doi.org/10.1021/acs.chemrestox.8b00335.

Article  PubMed  Google Scholar 

Li Y, Wang M, Zhi P, You J, Gao J-Q. Metformin synergistically suppress tumor growth with doxorubicin and reverse drug resistance by inhibiting the expression and function of P-glycoprotein in MCF7/ADR cells and xenograft models. Oncotarget. 2018. https://doi.org/10.18632/oncotarget.23187.

Article  PubMed  PubMed Central  Google Scholar 

Ciarimboli G. Introduction to the cellular transport of organic cations. In: Ciarimboli G, Gautron S, Schlatter E, editors. Organic cation transporters. Cham: Springer; 2016. https://doi.org/10.1007/978-3-319-23793-0_1.

Chapter  Google Scholar 

Zupkó I, Molnár J, Réthy B, Minorics R, Frank É, Wölfling J, et al. Anticancer and multidrug resistance-reversal effects of solanidine analogs synthetized from pregnadienolone acetate. Molecules. 2014. https://doi.org/10.3390/molecules19022061.

Article  PubMed  PubMed Central  Google Scholar 

Sims JT, Ganguly SS, Bennett H, Friend JW, Tepe J, Plattner R. Imatinib reverses doxorubicin resistance by affecting activation of STAT3-dependent NF-κB and HSP27/p38/AKT pathways and by inhibiting ABCB1. PLoS ONE. 2013. https://doi.org/10.1371/journal.pone.0055509.

Article  PubMed  PubMed Central  Google Scholar 

Boesch M, Wolf D, Sopper S. Optimized stem cell detection using the DyeCycle-triggered side population phenotype. Stem Cells Int. 2016. https://doi.org/10.1155/2016/1652389.

Article  PubMed  Google Scholar 

Jouan E, Le Vee M, Denizot C, Da Violante G, Fardel O. The mitochondrial fluorescent dye rhodamine 123 is a high-affinity substrate for organic cation transporters (OCT s) 1 and 2. Fundam Clin Pharmacol. 2014. https://doi.org/10.1111/j.1472-8206.2012.01071.x.

Article  PubMed  Google Scholar 

Marquez B, Ameye G, Vallet CM, Tulkens PM, Poirel HA, Van Bambeke F. Characterization of Abcc4 gene amplification in stepwise-selected mouse J774 macrophages resistant to the topoisomerase II inhibitor ciprofloxacin. PLoS ONE. 2011. https://doi.org/10.1371/journal.pone.0028368.

Article  PubMed  PubMed Central  Google Scholar 

Wang D, Wang J, Zhang J, Yi X, Piao J, Li L, et al. Decrease of ABCB1 protein expression and increase of G1 phase arrest induced by oleanolic acid in human multidrug-resistant cancer cells. Exp Ther Med. 2021. https://doi.org/10.3892/etm.2021.10167.

Article  PubMed  PubMed Central  Google Scholar 

Bray J, Sludden J, Griffin M, Cole M, Verrill M, Jamieson D, et al. Influence of pharmacogenetics on response and toxicity in breast cancer patients treated with doxorubicin and cyclophosphamide. Br J Cancer. 2010. https://doi.org/10.1038/sj.bjc.6605587.

Article  PubMed  PubMed Central  Google Scholar 

Li Z, Chen C, Chen L, Hu D, Yang X, Zhuo W, et al. STAT5a confers doxorubicin resistance to breast cancer by regulating ABCB1. Front Oncol. 2021. https://doi.org/10.3389/fonc.2021.697950.

Article  PubMed  PubMed Central  Google Scholar 

Phiboonchaiyanan PP, Kiratipaiboon C, Chanvorachote P. Ciprofloxacin mediates cancer stem cell phenotypes in lung cancer cells through caveolin-1-dependent mechanism. Chem Biol Interact. 2016. https://doi.org/10.1016/j.cbi.2016.03.005.

Article  PubMed  Google Scholar 

Lin M-C, Huang M-J, Liu C-H, Yang T-L, Huang M-C. GALNT2 enhances migration and invasion of oral squamous cell carcinoma by regulating EGFR glycosylation and activity. Oral Oncol. 2014. https://doi.org/10.1016/j.oraloncology.2014.02.003.

Article  PubMed  PubMed Central  Google Scholar 

Heger JI, Froehlich K, Pastuschek J, Schmidt A, Baer C, Mrowka R, et al. Human serum alters cell culture behavior and improves spheroid formation in comparison to fetal bovine serum. Exp Cell Res. 2018. https://doi.org/10.1016/j.yexcr.2018.02.017.

Article  PubMed  Google Scholar 

Takeda N, Kondo M, Ito S, Ito Y, Shimokata K, Kume H. Role of RhoA inactivation in reduced cell proliferation of human airway smooth muscle by simvastatin. Am J Respir Cell Mol Biol. 2006. https://doi.org/10.1165/rcmb.2006-0034OC.

Article  PubMed  PubMed Central  Google Scholar 

Schinkel AH, Jonker JW. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv Drug Deliv Rev. 2012. https://doi.org/10.1016/j.addr.2012.09.027.

Article  Google Scholar 

Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial–mesenchymal transitions in development and disease. Cell. 2009. https://doi.org/10.1016/j.cell.2009.11.007.

Article 

留言 (0)

沒有登入
gif