Exploring the inverse association of glioblastoma multiforme and Alzheimer’s disease via bioinformatics analysis

Carlsson SK, Brothers SP, Wahlestedt C. Emerging treatment strategies for glioblastoma multiforme. EMBO Mol Med. 2014;6(11):1359–70.

CAS  PubMed  PubMed Central  Google Scholar 

Scheltens P, De Strooper B, Kivipelto M, Holstege H, Chételat G, Teunissen CE, et al. Alzheimer’s disease. Lancet (London, England). 2021;397(10284):1577–90.

CAS  Google Scholar 

Qiu C, Kivipelto M, von Strauss E. Epidemiology of Alzheimer’s disease: occurrence, determinants, and strategies toward intervention. Dialogues Clin Neurosci. 2009;11(2):111–28.

PubMed  PubMed Central  Google Scholar 

Thakkar JP, Dolecek TA, Horbinski C, Ostrom QT, Lightner DD, Barnholtz-Sloan JS, et al. Epidemiologic and molecular prognostic review of glioblastoma. Cancer Epidemiol Biomarkers Prev. 2014;23(10):1985–96.

CAS  PubMed  PubMed Central  Google Scholar 

Driver JA. Inverse association between cancer and neurodegenerative disease: review of the epidemiologic and biological evidence. Biogerontology. 2014;15(6):547–57.

CAS  PubMed  Google Scholar 

Roe CM, Behrens MI, Xiong C, Miller JP, Morris JC. Alzheimer disease and cancer. Neurology. 2005;64(5):895–8.

CAS  PubMed  Google Scholar 

Roe CM, Fitzpatrick AL, Xiong C, Sieh W, Kuller L, Miller JP, et al. Cancer linked to Alzheimer disease but not vascular dementia. Neurology. 2010;74(2):106–12.

CAS  PubMed  PubMed Central  Google Scholar 

Liu T, Ren D, Zhu X, Yin Z, Jin G, Zhao Z, et al. Transcriptional signaling pathways inversely regulated in Alzheimer’s disease and glioblastoma multiform. Sci Rep. 2013;3:3467.

PubMed  PubMed Central  Google Scholar 

Arnés M, Casas TS. Aberrant Wnt signaling: a special focus in CNS diseases. J Neurogenet. 2017;31(4):216–22.

PubMed  Google Scholar 

Candido S, Lupo G, Pennisi M, Basile MS, Anfuso CD, Petralia MC, et al. The analysis of miRNA expression profiling datasets reveals inverse microRNA patterns in glioblastoma and Alzheimer’s disease. Oncol Rep. 2019;42(3):911–22.

CAS  PubMed  PubMed Central  Google Scholar 

Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47.

PubMed  PubMed Central  Google Scholar 

Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284–7.

CAS  PubMed  PubMed Central  Google Scholar 

Musicco M, Adorni F, Di Santo S, Prinelli F, Pettenati C, Caltagirone C, et al. Inverse occurrence of cancer and Alzheimer disease: a population-based incidence study. Neurology. 2013;81(4):322–8.

PubMed  Google Scholar 

Mihaylova MM, Shaw RJ. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol. 2011;13(9):1016–23.

CAS  PubMed  PubMed Central  Google Scholar 

Chhipa RR, Fan Q, Anderson J, Muraleedharan R, Huang Y, Ciraolo G, et al. AMP kinase promotes glioblastoma bioenergetics and tumour growth. Nat Cell Biol. 2018;20(7):823–35.

CAS  PubMed  PubMed Central  Google Scholar 

Ríos M, Foretz M, Viollet B, Prieto A, Fraga M, Costoya JA, et al. AMPK activation by oncogenesis is required to maintain cancer cell proliferation in astrocytic tumors. Cancer Res. 2013;73(8):2628–38.

PubMed  Google Scholar 

Wang L, Li N, Shi FX, Xu WQ, Cao Y, Lei Y, et al. Upregulation of AMPK ameliorates Alzheimer’s disease-like tau pathology and memory impairment. Mol Neurobiol. 2020;57(8):3349–61.

CAS  PubMed  Google Scholar 

Jornayvaz FR, Shulman GI. Regulation of mitochondrial biogenesis. Essays Biochem. 2010;47:69–84.

CAS  PubMed  Google Scholar 

Lu J, Wu DM, Zheng YL, Hu B, Zhang ZF, Shan Q, et al. Quercetin activates AMP-activated protein kinase by reducing PP2C expression protecting old mouse brain against high cholesterol-induced neurotoxicity. J Pathol. 2010;222(2):199–212.

CAS  PubMed  Google Scholar 

Guerrero A, De Strooper B, Arancibia-Cárcamo IL. Cellular senescence at the crossroads of inflammation and Alzheimer’s disease. Trends Neurosci. 2021;44(9):714–27.

CAS  PubMed  Google Scholar 

Pawlowska E, Szczepanska J, Szatkowska M, Blasiak J. An interplay between senescence, apoptosis and autophagy in glioblastoma multiforme-role in pathogenesis and therapeutic perspective. Int J Mol Sci. 2018;19(3):889.

PubMed Central  Google Scholar 

Aasland D, Götzinger L, Hauck L, Berte N, Meyer J, Effenberger M, et al. Temozolomide Induces Senescence and Repression of DNA Repair Pathways in Glioblastoma Cells via Activation of ATR-CHK1, p21, and NF-κB. Cancer Res. 2019;79(1):99–113.

CAS  PubMed  Google Scholar 

Tang Q, Ren L, Liu J, Li W, Zheng X, Wang J, et al. Withaferin A triggers G2/M arrest and intrinsic apoptosis in glioblastoma cells via ATF4-ATF3-CHOP axis. Cell Prolif. 2020;53(1):e12706.

PubMed  Google Scholar 

Liu JY, Fu WQ, Zheng XJ, Li W, Ren LW, Wang JH, et al. Avasimibe exerts anticancer effects on human glioblastoma cells via inducing cell apoptosis and cell cycle arrest. Acta Pharmacol Sin. 2021;42(1):97–107.

PubMed  Google Scholar 

Koseoglu MM, Norambuena A, Sharlow ER, Lazo JS, Bloom GS. Aberrant neuronal cell cycle re-entry: the pathological confluence of Alzheimer’s disease and brain insulin resistance, and its relation to cancer. J Alzheimer’s Dis. 2019;67(1):1–11.

Google Scholar 

Huang F, Wang M, Liu R, Wang JZ, Schadt E, Haroutunian V, et al. CDT2-controlled cell cycle reentry regulates the pathogenesis of Alzheimer’s disease. Alzheimer’s Dement. 2019;15(2):217–31.

Google Scholar 

Tołoczko-Iwaniuk N, Dziemiańczyk-Pakieła D, Nowaszewska BK, Celińska-Janowicz K, Miltyk W. Celecoxib in cancer therapy and prevention—review. Curr Drug Targets. 2019;20(3):302–15.

PubMed  Google Scholar 

Suzuki K, Gerelchuluun A, Hong Z, Sun L, Zenkoh J, Moritake T, et al. Celecoxib enhances radiosensitivity of hypoxic glioblastoma cells through endoplasmic reticulum stress. Neuro Oncol. 2013;15(9):1186–99.

CAS  PubMed  PubMed Central  Google Scholar 

Sareddy GR, Geeviman K, Ramulu C, Babu PP. The nonsteroidal anti-inflammatory drug celecoxib suppresses the growth and induces apoptosis of human glioblastoma cells via the NF-κB pathway. J Neurooncol. 2012;106(1):99–109.

CAS  PubMed  Google Scholar 

Yin D, Jin G, He H, Zhou W, Fan Z, Gong C, et al. Celecoxib reverses the glioblastoma chemo-resistance to temozolomide through mitochondrial metabolism. Aging (Albany NY). 2021;13(17):21268–82.

CAS  Google Scholar 

Jaturapatporn D, Isaac MG, McCleery J, Tabet N. Aspirin, steroidal and non-steroidal anti-inflammatory drugs for the treatment of Alzheimer’s disease. Cochrane Database Syst Rev. 2012. https://doi.org/10.1002/14651858.CD006378.pub2.

PubMed  Google Scholar 

Dhapola R, Hota SS, Sarma P, Bhattacharyya A, Medhi B, Reddy DH. Recent advances in molecular pathways and therapeutic implications targeting neuroinflammation for Alzheimer’s disease. Inflammopharmacology. 2021;29(6):1669–81.

CAS  PubMed  PubMed Central  Google Scholar 

Datusalia AK, Singh G, Yadav N, Gaun S, Manik M, Singh RK. Targeted delivery of montelukast for treatment of Alzheimer’s disease. CNS Neurol Disord Drug Targets. 2021. https://doi.org/10.2174/1871527320666210902163756.

Google Scholar 

Xiong LY, Ouk M, Wu CY, Rabin JS, Lanctôt KL, Herrmann N, et al. Leukotriene receptor antagonist use and cognitive decline in normal cognition, mild cognitive impairment, and Alzheimer’s dementia. Alz Res Therapy. 2021;13(1):147.

CAS  Google Scholar 

Piromkraipak P, Sangpairoj K, Tirakotai W, Chaithirayanon K, Unchern S, Supavilai P, et al. Cysteinyl leukotriene receptor antagonists inhibit migration, invasion, and expression of MMP-2/9 in human glioblastoma. Cell Mol Neurobiol. 2018;38(2):559–73.

CAS  PubMed  Google Scholar 

Piromkraipak P, Parakaw T, Phuagkhaopong S, Srihirun S, Chongthammakun S, Chaithirayanon K, et al. Cysteinyl leukotriene receptor antagonists induce apoptosis and inhibit proliferation of human glioblastoma cells by downregulating B-cell lymphoma 2 and inducing cell cycle arrest. Can J Physiol Pharmacol. 2018;96(8):798–806.

CAS  PubMed  Google Scholar 

Fang X, Duan SF, Gong YZ, Wang F, Chen XL. Identification of key genes associated with changes in the host response to severe burn shock: a bioinformatics analysis with data from the Gene Expression Omnibus (GEO) database. J Inflamm Res. 2020;13:1029–41.

CAS  PubMed  PubMed Central  Google Scholar 

Yang S, Cao C, Xie Z, Zhou Z. Analysis of potential hub genes involved in the pathogenesis of Chinese type 1 diabetic patients. Ann Transl Med. 2020;8(6):295.

CAS  PubMed  PubMed Central  Google Scholar 

Su W, Zhao Y, Wei Y, Zhang X, Ji J, Yang S. Exploring the pathogenesis of psoriasis complicated with atherosclerosis via microarray data analysis. Front Immunol. 2021;12:667690.

CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif