Folate functionalized gold-coated magnetic nanoparticles effect in combined electroporation and radiation treatment of HPV-positive oropharyngeal cancer

Husain N, Neyaz A. Human papillomavirus associated head and neck squamous cell carcinoma: controversies and new concepts. J Oral Biol Craniofac Res. 2017;7(3):198–205.

PubMed  PubMed Central  Article  Google Scholar 

Chen AM, Felix C, Wang P-C, et al. Reduced-dose radiotherapy for human papillomavirus-associated squamous-cell carcinoma of the oropharynx: a single-arm, phase 2 study. Lancet Oncol. 2017;18(6):803–11.

PubMed  PubMed Central  Article  Google Scholar 

Neshastehriz A, Amini SM, Mohammadi A, et al. In-vitro investigation of green synthesized gold nanoparticle’s role in combined photodynamic and radiation therapy of cancerous cells. Adv Nat Sci. 2020;11(4):045006.

CAS  Google Scholar 

Koosha F, Farsangi ZJ, Samadian H, et al. Mesoporous silica coated gold nanorods: a multifunctional theranostic platform for radiotherapy and X-ray imaging. J Porous Mater. 2021;28(6):1961–8.

CAS  Article  Google Scholar 

Hosseinabadi SZ, Safari S, Mirzaei M, et al. Folic acid decorated mesoporous silica nanospheres loaded with gadolinium for breast cancer cell imaging. Adv Nat Sci. 2020;11(4):045010.

CAS  Google Scholar 

Miklavcic D. Handbook of electroporation. NY: Springer; 2019.

Google Scholar 

Weaver JC, Chizmadzhev Y. Electroporation. In: Smith J, editor. Biological and medical aspects of electromagnetic fields. Boca Raton: CRC Press; 2018. p. 243–84.

Chapter  Google Scholar 

Phonesouk E, Lechevallier S, Ferrand A, et al. Increasing uptake of silica nanoparticles with electroporation: from cellular characterization to potential applications. Materials. 2019;12(1):179.

CAS  PubMed Central  Article  Google Scholar 

Narayanan G, Bilimoria MM, Hosein PJ, et al. Multicenter randomized controlled trial and registry study to assess the safety and efficacy of the NanoKnife® system for the ablation of stage 3 pancreatic adenocarcinoma: overview of study protocols. BMC Cancer. 2021;21(1):1–10.

Article  Google Scholar 

He C, Wang J, Sun S, et al. Irreversible electroporation versus radiotherapy after induction chemotherapy on survival in patients with locally advanced pancreatic cancer: a propensity score analysis. BMC Cancer. 2019;19(1):1–11.

Article  Google Scholar 

Eyvazzadeh N, Shakeri-Zadeh A, Fekrazad R, et al. Gold-coated magnetic nanoparticle as a nanotheranostic agent for magnetic resonance imaging and photothermal therapy of cancer. Lasers Med Sci. 2017;32(7):1469–77.

PubMed  Article  Google Scholar 

Keshtkar M, Shahbazi-Gahrouei D, Mahmoudabadi A. Synthesis and application of Fe3O4@ Au composite nanoparticles as magnetic resonance/computed tomography dual-modality contrast agent. J Med Signals Sens. 2020;10(3):201.

PubMed  PubMed Central  Google Scholar 

Nandhini G, Shobana M. Role of ferrite nanoparticles in hyperthermia applications. J Magn Magn Mater. 2022;552:169236.

CAS  Article  Google Scholar 

Montazerabadi AR, Oghabian MA, Irajirad R, et al. Development of gold-coated magnetic nanoparticles as a potential MRI contrast agent. NANO. 2015;10(04):1550048.

CAS  Article  Google Scholar 

Amini SM, Kharrazi S, Jaafari MR. Radio frequency hyperthermia of cancerous cells with gold nanoclusters: an in vitro investigation. Gold Bull. 2017;50(1):43–50.

CAS  Article  Google Scholar 

Amini SM, Samareh Salavati Pour M, Vahidi R, et al. Green synthesis of stable silver nanoparticles using Teucrium polium extract: in-vitro anticancer activity on NALM-6. Nanomed Res J. 2021;6(2):170–8.

CAS  Google Scholar 

Ghaznavi H, Hosseini-Nami S, Kamrava SK, et al. Folic acid conjugated PEG coated gold–iron oxide core–shell nanocomplex as a potential agent for targeted photothermal therapy of cancer. Artif Cells Nanomed Biotechnol. 2017;46(8):1594–604.

PubMed  Google Scholar 

Schwaminger SP, Bauer D, Fraga-García P. Gold-iron oxide nanohybrids: insights into colloidal stability and surface-enhanced Raman detection. Nanoscale Adv. 2021;3(22):6438–45.

CAS  Article  Google Scholar 

Ramachandran P, Lee CY, Doong R-A, et al. A titanium dioxide/nitrogen-doped graphene quantum dot nanocomposite to mitigate cytotoxicity: synthesis, characterisation, and cell viability evaluation. RSC Adv. 2020;10(37):21795–805.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Strojan K, Leonardi A, Bregar VB, et al. Dispersion of nanoparticles in different media importantly determines the composition of their protein corona. PLoS ONE. 2017;12(1):e0169552.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Partikel K, Korte R, Mulac D, et al. Serum type and concentration both affect the protein-corona composition of PLGA nanoparticles. Beilstein J Nanotechnol. 2019;10(1):1002–15.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Ma H-l, Qi X-r, Maitani Y, et al. Preparation and characterization of superparamagnetic iron oxide nanoparticles stabilized by alginate. Int J Pharm. 2007;333(1–2):177–86.

CAS  PubMed  Article  Google Scholar 

He Y, Wang X, Jin P, et al. Complexation of anthracene with folic acid studied by FTIR and UV spectroscopies. Spectrochim Acta Part A. 2009;72(4):876–9.

CAS  Article  Google Scholar 

Dharmatti R, Phadke C, Mewada A, et al. Surface orchestration of gold nanoparticles using cysteamine as linke r and folate as navigating molecule for synaphic delivery of doxorubicin. J Nanomed Res. 2014;1(1):1–7.

Google Scholar 

Rezaeian A, Amini SM, Najafabadi MRH, et al. Plasmonic hyperthermia or radiofrequency electric field hyperthermia of cancerous cells through green-synthesized curcumin-coated gold nanoparticles. Lasers Med Sci. 2021;37(2):1333.

PubMed  Article  Google Scholar 

Shahmoradi S, Shariati A, Zargar N, et al. Antimicrobial effects of selenium nanoparticles in combination with photodynamic therapy against Enterococcus faecalis biofilm. Photodiagn Photodyn Ther. 2021;35:102398.

CAS  Article  Google Scholar 

Karan T, Erenler R, Bozer BM. Synthesis and characterization of silver nanoparticles using curcumin: cytotoxic, apoptotic, and necrotic effects on various cell lines. Zeitschrift für Naturforschung C. 2022. https://doi.org/10.1515/znc-2021-0298.

Article  Google Scholar 

Rai Y, Pathak R, Kumari N, et al. Mitochondrial biogenesis and metabolic hyperactivation limits the application of MTT assay in the estimation of radiation induced growth inhibition. Sci Rep. 2018;8(1):1531.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Wu Y-N, Chen D-H, Shi X-Y, et al. Cancer-cell-specific cytotoxicity of non-oxidized iron elements in iron core–gold shell NPs. Nanomedicine. 2011;7(4):420–7.

PubMed  Article  CAS  Google Scholar 

He C, Jiang S, Jin H, et al. Mitochondrial electron transport chain identified as a novel molecular target of SPIO nanoparticles mediated cancer-specific cytotoxicity. Biomaterials. 2016;83:102–14.

CAS  PubMed  Article  Google Scholar 

Turnbull T, Douglass M, Williamson NH, et al. Cross-correlative single-cell analysis reveals biological mechanisms of nanoparticle radiosensitization. ACS nano. 2019;13(5):5077–90.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Leemans CR, Braakhuis BJ, Brakenhoff RH. The molecular biology of head and neck cancer. Nat Rev Cancer. 2011;11(1):9.

CAS  PubMed  Article  Google Scholar 

Wiest T, Schwarz E, Enders C, et al. Involvement of intact HPV16 E6/E7 gene expression in head and neck cancers with unaltered p53 status and perturbed pRb cell cycle control. Oncogene. 2002;21(10):1510.

CAS  PubMed  Article  Google Scholar 

Kimple RJ, Smith MA, Blitzer GC, et al. Enhanced radiation sensitivity in HPV-positive head and neck cancer. Can Res. 2013;73(15):4791–800.

CAS  Article  Google Scholar 

Yarmush ML, Golberg A, Serša G, et al. Electroporation-based technologies for medicine: principles, applications, and challenges. Annu Rev Biomed Eng. 2014;16:295–320.

CAS  PubMed  Article  Google Scholar 

Haltiwanger SG. The electrical properties of cancer cells. Rife 2003 International Health Conference. 2003; Seattle, WA. http://www.royalrife.com/haltiwanger1.

Sree VG, Udayakumar K, Sundararajan R. Electric field analysis of breast tumor cells. Int J Breast Cancer. 2011;2011:1–8.

Article  Google Scholar 

Dermol-Černe J, Miklavčič D, Reberšek M, et al. Plasma membrane depolarization and permeabilization due to electric pulses in cell lines of different excitability. Bioelectrochemistry. 2018;122:103–14.

PubMed  Article  CAS  Google Scholar 

Frandsen SK, McNeil AK, Novak I, et al. Difference in membrane repair capacity between cancer cell lines and a normal cell line. J Membr Biol. 2016;249(4):569–76.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Cvetković DM, Živanović MN, Milutinović MG, et al. Real-time monitoring of cytotoxic effects of electroporation on breast and colon cancer cell lines. Bioelectrochemistry. 2017;113:85–94.

Article  CAS  Google Scholar 

Li Y, Xu Y, Fleischer CC, et al. Impact of anti-biofouling surface coatings on the properties of nanomaterials and their biomedical applications. J Mater Chem B. 2018;6(1):9–24.

PubMed  Article  Google Scholar 

Brun E, Sicard-Roselli C. Could nanoparticle corona characterization help for biological consequence prediction? Cancer nanotechnol. 2014;5(1):7.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Salvati A, Pitek AS, Monopoli MP, et al. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nanotechnol. 2013;8(2):137.

CAS  PubMed  Article  Google Scholar 

Krais A, Wortmann L, Hermanns L, et al. Targeted uptake of folic acid-functionalized iron oxide nanoparticles by ovarian cancer cells in the presence but not in the absence of serum. Nanomedicine. 2014;10(7):1421–31.

CAS 

留言 (0)

沒有登入
gif