Rad54L promotes bladder cancer progression by regulating cell cycle and cell senescence

Globocan WHO. Estimated cancer incidence, mortality and prevalence worldwide in 2012. Lyon: WHO Globocan; 2012.

Google Scholar 

Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021;71:7–33. https://doi.org/10.3322/caac.21654.

Article  PubMed  Google Scholar 

Chen X, Zhang J, Ruan W, Huang M, Wang C, Wang H, et al. Urine DNA methylation assay enables early detection and recurrence monitoring for bladder cancer. J Clin Invest. 2020;130:6278–89. https://doi.org/10.1172/jci139597.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Ruan W, Chen X, Huang M, Wang H, Chen J, Liang Z, et al. A urine-based DNA methylation assay to facilitate early detection and risk stratification of bladder cancer. Clin Epigenetics. 2021;13:91. https://doi.org/10.1186/s13148-021-01073-x.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Burger M, Catto JW, Dalbagni G, Grossman HB, Herr H, Karakiewicz P, et al. Epidemiology and risk factors of urothelial bladder cancer. Eur Urol. 2013;63:234–41. https://doi.org/10.1016/j.eururo.2012.07.033.

Article  PubMed  Google Scholar 

Pilié PG, Tang C, Mills GB, Yap TA. State-of-the-art strategies for targeting the DNA damage response in cancer. Nat Rev Clin Oncol. 2019;16:81–104. https://doi.org/10.1038/s41571-018-0114-z.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Li L, Karanika S, Yang G, Wang J, Park S, Broom BM, et al. Androgen receptor inhibitor-induced “BRCAness” and PARP inhibition are synthetically lethal for castration-resistant prostate cancer. Sci Signal. 2017. https://doi.org/10.1126/scisignal.aam7479.

Article  PubMed  PubMed Central  Google Scholar 

Doherty SC, McKeown SR, McKelvey-Martin V, Downes CS, Atala A, Yoo JJ, et al. Cell cycle checkpoint function in bladder cancer. J Natl Cancer Inst. 2003;95:1859–68. https://doi.org/10.1093/jnci/djg120.

CAS  Article  PubMed  Google Scholar 

Li D, Frazier M, Evans DB, Hess KR, Crane CH, Jiao L, et al. Single nucleotide polymorphisms of RecQ1, RAD54L, and ATM genes are associated with reduced survival of pancreatic cancer. J Clin Oncol. 2006;24:1720–8. https://doi.org/10.1200/jco.2005.04.4206.

CAS  Article  PubMed  Google Scholar 

Zhan Q. Gadd45a, a p53- and BRCA1-regulated stress protein, in cellular response to DNA damage. Mutat Res. 2005;569:133–43. https://doi.org/10.1016/j.mrfmmm.2004.06.055.

CAS  Article  PubMed  Google Scholar 

Wei F, Xu J, Tang L, Shao J, Wang Y, Chen L, et al. p27(Kip1) V109G polymorphism and cancer risk: a systematic review and meta-analysis. Cancer Biother Radiopharm. 2012;27:665–71. https://doi.org/10.1089/cbr.2012.1229.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Ou Y, Ma L, Ma L, Huang Z, Zhou W, Zhao C, et al. Overexpression of cyclin B1 antagonizes chemotherapeutic-induced apoptosis through PTEN/Akt pathway in human esophageal squamous cell carcinoma cells. Cancer Biol Ther. 2013;14:45–55. https://doi.org/10.4161/cbt.22627.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Tong T, Zhong Y, Kong J, Dong L, Song Y, Fu M, et al. Overexpression of Aurora-A contributes to malignant development of human esophageal squamous cell carcinoma. Clin Cancer Res. 2004;10:7304–10. https://doi.org/10.1158/1078-0432.Ccr-04-0806.

CAS  Article  PubMed  Google Scholar 

Zhou Q, Huang J, Zhang C, Zhao F, Kim W, Tu X, et al. The bromodomain containing protein BRD-9 orchestrates RAD51-RAD54 complex formation and regulates homologous recombination-mediated repair. Nat Commun. 2020;11:2639. https://doi.org/10.1038/s41467-020-16443-x.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Chen K, Xing J, Yu W, Xia Y, Zhang Y, Cheng F, et al. Identification and validation of hub genes associated with bladder cancer by integrated bioinformatics and experimental assays. Front Oncol. 2021;11:782981. https://doi.org/10.3389/fonc.2021.782981.

Article  PubMed  PubMed Central  Google Scholar 

Hoffmann MJ, Schulz WA. Alterations of chromatin regulators in the pathogenesis of urinary bladder urothelial carcinoma. Cancers (Basel). 2021. https://doi.org/10.3390/cancers13236040.

Article  PubMed Central  Google Scholar 

Pan S, Zhan Y, Chen X, Wu B, Liu B. Identification of biomarkers for controlling cancer stem cell characteristics in bladder cancer by network analysis of transcriptome data stemness indices. Front Oncol. 2019;9:613. https://doi.org/10.3389/fonc.2019.00613.

Article  PubMed  PubMed Central  Google Scholar 

Agarwal S, van Cappellen WA, Guénolé A, Eppink B, Linsen SE, Meijering E, et al. ATP-dependent and independent functions of Rad54 in genome maintenance. J Cell Biol. 2011;192:735–50. https://doi.org/10.1083/jcb.201011025.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Mazin AV, Alexeev AA, Kowalczykowski SC. A novel function of Rad54 protein. Stabilization of the Rad51 nucleoprotein filament. J Biol Chem. 2003;278:14029–36. https://doi.org/10.1074/jbc.M212779200.

CAS  Article  PubMed  Google Scholar 

Machida S, Takaku M, Ikura M, Sun J, Suzuki H, Kobayashi W, et al. Nap1 stimulates homologous recombination by RAD51 and RAD54 in higher-ordered chromatin containing histone H1. Sci Rep. 2014;4:4863. https://doi.org/10.1038/srep04863.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Spies J, Waizenegger A, Barton O, Sürder M, Wright WD, Heyer WD, et al. Nek1 regulates Rad54 to orchestrate homologous recombination and replication fork stability. Mol Cell. 2016;62:903–17. https://doi.org/10.1016/j.molcel.2016.04.032.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Swagemakers SM, Essers J, de Wit J, Hoeijmakers JH, Kanaar R. The human RAD54 recombinational DNA repair protein is a double-stranded DNA-dependent ATPase. J Biol Chem. 1998;273:28292–7. https://doi.org/10.1074/jbc.273.43.28292.

CAS  Article  PubMed  Google Scholar 

Rosenbaum JC, Bonilla B, Hengel SR, Mertz TM, Herken BW, Kazemier HG, et al. The Rad51 paralogs facilitate a novel DNA strand specific damage tolerance pathway. Nat Commun. 2019;10:3515. https://doi.org/10.1038/s41467-019-11374-8.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Bong IPN, Ng CC, Baharuddin P, Zakaria Z. MicroRNA expression patterns and target prediction in multiple myeloma development and malignancy. Genes Genomics. 2017;39:533–40. https://doi.org/10.1007/s13258-017-0518-7.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Leone PE, Mendiola M, Alonso J, Paz-y-Miño C, Pestaña A. Implications of a RAD54L polymorphism (2290C/T) in human meningiomas as a risk factor and/or a genetic marker. BMC Cancer. 2003;3:6. https://doi.org/10.1186/1471-2407-3-6.

Article  PubMed  PubMed Central  Google Scholar 

Mun JY, Baek SW, Park WY, Kim WT, Kim SK, Roh YG, et al. E2F1 promotes progression of bladder cancer by modulating RAD54L involved in homologous recombination repair. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21239025.

Article  PubMed  PubMed Central  Google Scholar 

Zhang J, Zhou Q, Xie K, Cheng L, Peng S, Xie R, et al. Targeting WD repeat domain 5 enhances chemosensitivity and inhibits proliferation and programmed death-ligand 1 expression in bladder cancer. J Exp Clin Cancer Res. 2021;40:203. https://doi.org/10.1186/s13046-021-01989-5.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Chen X, Xie R, Gu P, Huang M, Han J, Dong W, et al. Long noncoding RNA LBCS inhibits self-renewal and chemoresistance of bladder cancer stem cells through epigenetic silencing of SOX2. Clin Cancer Res. 2019;25:1389–403. https://doi.org/10.1158/1078-0432.Ccr-18-1656.

CAS  Article  PubMed  Google Scholar 

Krug U, Ganser A, Koeffler HP. Tumor suppressor genes in normal and malignant hematopoiesis. Oncogene. 2002;21:3475–95. https://doi.org/10.1038/sj.onc.1205322.

CAS  Article  PubMed  Google Scholar 

Mjelle R, Hegre SA, Aas PA, Slupphaug G, Drabløs F, Saetrom P, et al. Cell cycle regulation of human DNA repair and chromatin remodeling genes. DNA Repair (Amst). 2015;30:53–67. https://doi.org/10.1016/j.dnarep.2015.03.007.

CAS  Article  Google Scholar 

Helbling-Leclerc A, Garcin C, Rosselli F. Beyond DNA repair and chromosome instability—Fanconi anaemia as a cellular senescence-associated syndrome. Cell Death Differ. 2021;28:1159–73. https://doi.org/10.1038/s41418-021-00764-5.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Chandler H, Peters G. Stressing the cell cycle in senescence and aging. Curr Opin Cell Biol. 2013;25:765–71. https://doi.org/10.1016/j.ceb.2013.07.005.

CAS  Article  PubMed  Google Scholar 

Kumari R, Jat P. Mechanisms of cellular senescence: cell cycle arrest and senescence associated secretory phenotype. Front Cell Dev Biol. 2021;9:645593. https://doi.org/10.3389/fcell.2021.645593.

Article  PubMed  PubMed Central  Google Scholar 

Kamal S, Junaid M, Ejaz A, Bibi I, Akash MSH, Rehman K. The secrets of telomerase: retrospective analysis and future prospects. Life Sci. 2020;257:118115. https://doi.org/10.1016/j.lfs.2020.118115.

CAS  Article  PubMed  Google Scholar 

Rovillain E, Mansfield L, Lord CJ, Ashworth A, Jat PS. An RNA interference screen for identifying downstream effectors of the p53 and pRB tumour suppressor pathways involved in senescence. BMC Genomics. 2011;12:355. https://doi.org/10.1186/1471-2164-12-355.

CAS  Article  PubMed 

留言 (0)

沒有登入
gif