Evaluation of Bone Turnover Markers Such as Osteoprotegerin, Sclerostin and Dickkopf-1 in Subclinical Hyperthyroidism

Vestergaard P, Mosekilde L. Hyperthyroidism, bone mineral, fracture risk - A meta-analysis. Thyroid [Internet]. Mary Ann Liebert Inc.; 2003 [cited 2020 Dec 13];13:585–93. Available from: https://www.liebertpub.com/doi/abs/10.1089/105072503322238854.

Abe E, Marians RC, Yu W, Wu X, Bin, Ando T, Li Y, et al. TSH is a negative regulator of skeletal remodeling. Cell Cell Press. 2003;115:151–62.

CAS  Google Scholar 

Baron R, Kneissel M. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med [Internet]. 2013 [cited 2020 Dec 14];19:179–92. Available from: http://www.nature.com/articles/nm.3074.

Cooper DS, Biondi B. Subclinical thyroid disease. Lancet. Elsevier; 2012. p. 1142–54.

Blum MR, Bauer DC, Collet TH, Fink HA, Cappola AR, Da Costa BR, et al. Subclinical thyroid dysfunction and fracture risk a meta-analysis. JAMA - J Am Med Assoc [Internet]. American Medical Association; 2015 [cited 2020 Dec 14];313:2055–65. Available from: https://jamanetwork.com/.

Acar B, Ozay AC, Ozay OE, Okyay E, Sisman AR, Ozaksoy D. Evaluation of thyroid function status among postmenopausal women with and without osteoporosis. Int J Gynecol Obstet Elsevier Ireland Ltd. 2016;134:53–7.

CAS  Article  Google Scholar 

Hofbauer LC, Heufelder AE. Role of receptor activator of nuclear factor-κB ligand and osteoprotegerin in bone cell biology. J. Mol. Med. 2001. p. 243–53.

Mizuno A, Amizuka N, Irie K, Murakami A, Fujise N, Kanno T, et al. Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin. Biochem Biophys Res Commun Academic Press Inc. 1998;247:610–5.

CAS  Article  Google Scholar 

Jørgensen HL, Kusk P, Madsen B, Fenger M, Lauritzen JB. Serum osteoprotegerin (OPG) and the A163G polymorphism in the OPG promoter region are related to peripheral measures of bone mass and fracture odds ratios. J Bone Miner Metab. 2004;22:132–8.

Article  Google Scholar 

Amato G, Mazziotti G, Sorvillo F, Piscopo M, Lalli E, Biondi B, et al. High serum osteoprotegerin levels in patients with hyperthyroidism: Effect of medical treatment. Bone Elsevier. 2004;35:785–91.

CAS  Article  Google Scholar 

Kanis JA, Johnell O, Oden A, Johansson H, McCloskey E. FRAX™ and the assessment of fracture probability in men and women from the UK. Osteoporos Int [Internet]. Springer; 2008 [cited 2021 May 16];19:385–97. Available from: https://link.springer.com/article/https://doi.org/10.1007/s00198-007-0543-5.

Lippuner K, Johansson H, Kanis JA, Rizzoli R. FRAX® assessment of osteoporotic fracture probability in Switzerland. Osteoporos Int [Internet]. Springer; 2010 [cited 2021 May 16];21:381–9. Available from: https://link.springer.com/article/10.1007/s00198-009-0975-1.

Polovina S, Micić D, Miljić D, Milić N, Micić D, Popović V. The Fracture Risk Assessment Tool (FRAX score) in subclinical hyperthyroidism. Vojnosanit Pregl Institut za Vojnomedicinske Naucne Informacije/Documentaciju. 2015;72:510–6.

Article  Google Scholar 

Tsourdi E, Rijntjes E, Köhrle J, Hofbauer LC, Rauner M. Hyperthyroidism and Hypothyroidism in Male Mice and Their Effects on Bone Mass, Bone Turnover, and the Wnt Inhibitors Sclerostin and Dickkopf-1. Endocrinology [Internet]. Endocrine Society; 2015 [cited 2020 Dec 14];156:3517–27. Available from: https://academic.oup.com/endo/article/156/10/3517/2422836.

Tsourdi E, Colditz J, Lademann F, Rijntjes E, Köhrle J, Niehrs C, et al. The Role of Dickkopf-1 in Thyroid Hormone–Induced Changes of Bone Remodeling in Male Mice. Endocrinology [Internet]. Oxford University Press; 2019 [cited 2020 Dec 14];160:664–74. Available from: https://academic.oup.com/endo/article/160/3/664/5299763.

Saritekin I, Açikgöz Ş, Bayraktaroğlu T, Kuzu F, Can M, Güven B, et al. Sclerostin and bone metabolism markers in hyperthyroidism before treatment and interrelations between them. Acta Biochim Pol [Internet]. Polskie Towarzystwo Biochemiczne; 2017 [cited 2020 Dec 14];64:597–602. Available from: https://doi.org/10.18388/abp.2016_1303.

Shetty S, Kapoor N, Bondu J, Thomas N, Paul T. Bone turnover markers: Emerging tool in the management of osteoporosis [Internet]. Indian J. Endocrinol. Metab. Medknow Publications; 2016 [cited 2020 Dec 14]. p. 846–52. Available from: https://www.pmc/articles/PMC5105571/?report=abstract.

El Hadidy EHM, Ghonaim M, El Gawad SSA, El Atta MA. Impact of severity, duration, and etiology of hyperthyroidism on bone turnover markers and bone mineral density in men. BMC Endocr Disord [Internet]. BioMed Central; 2011 [cited 2020 Dec 14];11:1–7. Available from: https://link.springer.com/articles/https://doi.org/10.1186/1472-6823-11-15.

Belaya ZE, Belaya ZE, Melnichenko GA, Rozhinskaya LY, Fadeev VV, Alekseeva TM, et al. Subclinical hyperthyroidism of variable etiology and its influence on bone in postmenopausal women. Horm. 2007;6:62–70.

Google Scholar 

Siru R, Alfonso H, Chubb SAP, Golledge J, Flicker L, Yeap BB. Subclinical thyroid dysfunction and circulating thyroid hormones are not associated with bone turnover markers or incident hip fracture in older men. Clin Endocrinol (Oxf) [Internet]. Blackwell Publishing Ltd; 2018 [cited 2020 Dec 14];89:93–9. Available from: https://doi.org/10.1111/cen.13615.

留言 (0)

沒有登入
gif