In vitro and in vivo evaluation of dual Clofazimine and Verapamil loaded PLGA nanoparticles

Yang TW, Park HO, Jang HN, Yang JH, Kim SH, Moon SH, et al. Side effects associated with the treatment of multidrug-resistant tuberculosis at a tuberculosis referral hospital in South Korea: a retrospective study. Medicine. 2017;96(28).

Islam MM, Hameed HA, Mugweru J, Chhotaray C, Wang C, Tan Y, et al. Drug resistance mechanisms and novel drug targets for tuberculosis therapy. J Genet Genomics. 2017;44(1):21–37.

Article  Google Scholar 

Te Brake LH, de Knegt GJ, de Steenwinkel JE, Van Dam TJ, Burger DM, Russel FG, et al. The role of efflux pumps in tuberculosis treatment and their promise as a target in drug development: unraveling the black box. Annu Rev Pharmacol Toxicol. 2018;58:271–91.

CAS  Article  Google Scholar 

Gupta S, Tyagi S, Almeida DV, Maiga MC, Ammerman NC, Bishai WR. Acceleration of tuberculosis treatment by adjunctive therapy with verapamil as an efflux inhibitor. Am J Respir Crit Care Med. 2013;188(5):600–7.

CAS  Article  Google Scholar 

Gupta S, Cohen KA, Winglee K, Maiga M, Diarra B, Bishai WR. Efflux inhibition with verapamil potentiates bedaquiline in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2014;58(1):574–6.

Article  Google Scholar 

Chen C, Gardete S, Jansen RS, Shetty A, Dick T, Rhee KY, et al. Verapamil targets membrane energetics in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2018;62(5):e02107-17.

Article  Google Scholar 

Yano T, Kassovska-Bratinova S, Teh JS, Winkler J, Sullivan K, Isaacs A, et al. Reduction of clofazimine by mycobacterial type 2 NADH: quinone oxidoreductase: a pathway for the generation of bactericidal levels of reactive oxygen species. J Biol Chem. 2011;286(12):10276–87.

CAS  Article  Google Scholar 

Nugraha RV, Yunivita V, Santoso P, Aarnoutse RE, Ruslami R. Clofazimine as a treatment for multidrug-resistant tuberculosis: a review. Sci Pharm. 2021;89(2):19.

CAS  Article  Google Scholar 

Nasiruddin M, Neyaz M, Das S. Nanotechnology-based approach in tuberculosis treatment. Tuberc Res Treat. 2017;2017:4920209.

PubMed  PubMed Central  Google Scholar 

Moin A, Raizaday A, Hussain T, Nagshubha B. Development and optimization of dual drugs (Isoniazid and moxiflox-acin) loaded functional PLGA nanoparticles for the synergistic treatment of tuberculosis. Curr Drug Deliv. 2016;13(7):1034–52.

CAS  Article  Google Scholar 

McCall RL, Sirianni RW. PLGA nanoparticles formed by single-or double-emulsion with vitamin E-TPGS. J Vis Exp. 2013: e51015.

Niwa T, Takeuchi H, Hino T, Kunou N, Kawashima Y. In vitro drug release behavior of D, L-lactide/glycolide copolymer (PLGA) nanospheres with nafarelin acetate prepared by a novel spontaneous emulsification solvent diffusion method. J Pharm Sci. 1994;83(5):727–32.

CAS  Article  Google Scholar 

Song X, Zhao Y, Wu W, Bi Y, Cai Z, Chen Q, et al. PLGA nanoparticles simultaneously loaded with vincristine sulfate and verapamil hydrochloride: systematic study of particle size and drug entrapment efficiency. Int J Pharm. 2008;350(1–2):320–9.

CAS  Article  Google Scholar 

Laxmi MP, Vusuvandla G. Development and Validation of RP-HPLC method for the simultaneous estimation of Verapamil Hydrochloride and Trandolapril in bulk and pharmaceutical dosage forms. Asian J Pharm Anal Med Chem. 2016;4(1):38–46.

Google Scholar 

Queiroz RH, Pereira RC, Gotardo MA, Cordeiro DS, Melchio E Jr. Determination of clofazimine in leprosy patients by high-performance liquid chromatography. J Anal Toxicol. 2003;27(6):377–80.

CAS  Article  Google Scholar 

Sun SB, Liu P, Shao FM, Miao QL. Formulation and evaluation of PLGA nanoparticles loaded capecitabine for prostate cancer. Int J Clin Exp Med. 2015;8(10):19670–81.

CAS  PubMed  PubMed Central  Google Scholar 

Surolia R, Pachauri M, Ghosh PC. Preparation and characterization of monensin loaded PLGA nanoparticles: in vitro anti-malarial activity against Plasmodium falciparum. J Biomed Nanotechnol. 2012;8(1):172–81.

CAS  Article  Google Scholar 

Williams K, Minkowski A, Amoabeng O, Peloquin CA, Taylor D, Andries K, et al. Sterilizing activities of novel combinations lacking first- and second-line drugs in a murine model of tuberculosis. Antimicrob Agents Chemother. 2012;56(6):3114–20.

CAS  Article  Google Scholar 

Gupta PK, Pappuru S, Gupta S, Patra B, Chakraborty D, Verma RS. Self-assembled dual-drug loaded core-shell nanoparticles based on metal-free fully alternating polyester for cancer theranostics. Mater Sci Eng C Mater Biol Appl. 2019;101:448–63.

CAS  Article  Google Scholar 

Liu Y, Gao J, Du J, Shu W, Wang L, Wang Y, Xue Z, Li L, Xu S, Pang Y. Acquisition of clofazimine resistance following bedaquiline treatment for multidrug-resistant tuberculosis. Int J Infect Dis. 2021;102:392–6.

CAS  Article  Google Scholar 

Falzon D, Jaramillo E, Schünemann HJ, Arentz M, Bauer M, Bayona J, et al. WHO guidelines for the programmatic management of drug-resistant tuberculosis: 2011 update.

Hartkoorn RC, Uplekar S, Cole ST. Cross-resistance between clofazimine and bedaquiline through upregulation of MmpL5 in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2014;58(5):2979–81.

Article  Google Scholar 

Anderson JM, Shive MS. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev. 1997;28(1):5–24.

CAS  Article  Google Scholar 

Chaves LL, Lima SA, Vieira AC, Barreiros L, Segundo MA, Ferreira D, et al. Development of PLGA nanoparticles loaded with clofazimine for oral delivery: Assessment of formulation variables and intestinal permeability. Eur J Pharm Sci. 2018;112:28–37.

CAS  Article  Google Scholar 

Sahoo J, Murthy PN, Biswal S. Formulation of sustained-release dosage form of verapamil hydrochloride by solid dispersion technique using Eudragit RLPO or Kollidon® SR. AAPS PharmSciTech. 2009;10(1):27–33.

CAS  Article  Google Scholar 

Gebreel RM, Edris NA, Elmofty HM, Tadros MI, El-Nabarawi MA, Hassan DH. Development and Characterization of PLGA Nanoparticle-Laden Hydrogels for Sustained Ocular Delivery of Norfloxacin in the Treatment of Pseudomonas Keratitis: An Experimental Study. Drug Des Devel Ther. 2021;15:399–418.

Article  Google Scholar 

Valetti S, Xia X, Costa-Gouveia J, Brodin P, Bernet-Camard MF, Andersson M, et al. Clofazimine encapsulation in nanoporous silica particles for the oral treatment of antibiotic-resistant Mycobacterium tuberculosis infections. Nanomedicine. 2017;12(8):831–44.

CAS  Article  Google Scholar 

Song XR, Cai Z, Zheng Y, He G, Cui FY, Gong DQ, et al. Reversion of multidrug resistance by co-encapsulation of vincristine and verapamil in PLGA nanoparticles. Eur J Pharm Sci. 2009;37(3–4):300–5.

CAS  Article  Google Scholar 

Zhang Y, Feng J, McManus SA, Lu HD, Ristroph KD, Cho EJ, et al. Design and solidification of fast-releasing clofazimine nanoparticles for treatment of cryptosporidiosis. Mol Pharm. 2017;14(10):3480–8.

CAS  Article  Google Scholar 

Jonderian A, Maalouf R. Formulation and in vitro interaction of rhodamine-B loaded PLGA nanoparticles with cardiac myocytes. Front Pharmacol. 2016;7:458.

Article  Google Scholar 

留言 (0)

沒有登入
gif