Current progress on the biodegradation of synthetic plastics: from fundamentals to biotechnological applications

Ackermann YS, Li WJ, Op de Hipt L et al (2021) Engineering adipic acid metabolism in Pseudomonas putida. Metab Eng 67:29–40. https://doi.org/10.1016/j.ymben.2021.05.001

CAS  Article  Google Scholar 

Akutsu-Shigeno Y, Adachi Y, Yamada C et al (2006) Isolation of a bacterium that degrades urethane compounds and characterization of its urethane hydrolase. Appl Microbiol Biotechnol 70:422–429. https://doi.org/10.1007/s00253-005-0071-1

CAS  Article  Google Scholar 

Alariqi SAS, Pratheep Kumar A, Rao BSM, Singh RP (2006) Biodegradation of γ-sterilised biomedical polyolefins under composting and fungal culture environments. Polym Degrad Stab 91:1105–1116. https://doi.org/10.1016/j.polymdegradstab.2005.07.004

CAS  Article  Google Scholar 

Almeida EL, Rincón AFC, Jackson SA, Dobson ADW (2019) In: Silico screening and heterologous expression of a polyethylene terephthalate hydrolase (PETase)-like enzyme (SM14est) with polycaprolactone (PCL)-degrading activity, from the marine sponge-derived strain Streptomyces sp. SM14 Front Microbiol 10:2187. https://doi.org/10.3389/fmicb.2019.02187

Alessandra P, Cinzia P, Paola G et al (2010) Heterologous laccase production and its role in industrial applications. Bioeng Bugs 1:252–262. https://doi.org/10.4161/bbug.1.4.11438

Article  Google Scholar 

Al-Tammar KA, Omar O, Abdul Murad AM, Abu Bakar FD (2016) Expression and characterization of a cutinase (AnCUT2) from Aspergillus niger. Open Life Sci 11:29–38. https://doi.org/10.1515/biol-2016-0004

CAS  Article  Google Scholar 

Amobonye A, Bhagwat P, Singh P, Pillai S (2021) Plastic biodegradation: frontline microbes and their enzymes. Sci Total Environ 759:143536. https://doi.org/10.1016/j.scitotenv.2020.143536

CAS  Article  Google Scholar 

Andler R (2020) Bacterial and enzymatic degradation of poly(cis-1,4-isoprene) rubber: novel biotechnological applications. Biotechnol Adv 44:107606. https://doi.org/10.1016/j.biotechadv.2020.107606

CAS  Article  Google Scholar 

Andler R, Hiessl S, Yücel O et al (2018) Cleavage of poly(cis-1,4-isoprene) rubber as solid substrate by cultures of Gordonia polyisoprenivorans. N Biotechnol 44:6–12. https://doi.org/10.1016/j.nbt.2018.03.002

CAS  Article  Google Scholar 

Andler R, Valdés C, Díaz-Barrera A, Steinbüchel A (2020) Biotransformation of poly(cis-1,4-isoprene) in a multiphase enzymatic reactor for continuous extraction of oligo-isoprenoid molecules. N Biotechnol 58:10–16. https://doi.org/10.1016/j.nbt.2020.05.001

CAS  Article  Google Scholar 

Andrić P, Meyer AS, Jensen PA, Dam-Johansen K (2010) Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis: I. significance and mechanism of cellobiose and glucose inhibition on cellulolytic enzymes. Biotechnol Adv 28:308324. https://doi.org/10.1016/j.biotechadv.2010.01.003

CAS  Article  Google Scholar 

Arkatkar A, Arutchelvi J, Bhaduri S et al (2009) Degradation of unpretreated and thermally pretreated polypropylene by soil consortia. Int Biodeterior Biodegrad 63:106–111. https://doi.org/10.1016/j.ibiod.2008.06.005

CAS  Article  Google Scholar 

Arpia AA, Chen WH, Ubando AT et al (2021) Microplastic degradation as a sustainable concurrent approach for producing biofuel and obliterating hazardous environmental effects: a state-of-the-art review. J Hazard Mater 418:126381. https://doi.org/10.1016/j.jhazmat.2021.126381

CAS  Article  Google Scholar 

Austin HP, Allen MD, Donohoe BS et al (2018) Characterization and engineering of a plastic-degrading aromatic polyesterase. Proc Natl Acad Sci USA 115:4350–4357. https://doi.org/10.1073/pnas.1718804115

CAS  Article  Google Scholar 

Auta HS, Emenike CU, Jayanthi B, Fauziah SH (2018) Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp. and Rhodococcus sp. isolated from mangrove sediment. Mar Pollut Bull 127:15–21. https://doi.org/10.1016/j.marpolbul.2017.11.036

CAS  Article  Google Scholar 

Barth M, Wei R, Oeser T et al (2015) Enzymatic hydrolysis of polyethylene terephthalate films in an ultrafiltration membrane reactor. J Memb Sci 494:182–187. https://doi.org/10.1016/j.memsci.2015.07.030

CAS  Article  Google Scholar 

Bermúdez-García E, Peña-Montes C, Martins I et al (2019) Regulation of the cutinases expressed by Aspergillus nidulans and evaluation of their role in cutin degradation. Appl Microbiol Biotechnol 103:3863–3874. https://doi.org/10.1007/s00253-019-09712-3

CAS  Article  Google Scholar 

Brueckner T, Eberl A, Heumann S et al (2008) Enzymatic and chemical hydrolysis of Poly(ethylene terephthalate) fabrics. J Polym Sci Part A Polym Chem 46:6435–6443. https://doi.org/10.1002/pola.22952

CAS  Article  Google Scholar 

Carniel A, Valoni É, Nicomedes J et al (2017) Lipase from Candida antarctica (CALB) and cutinase from Humicola insolens act synergistically for PET hydrolysis to terephthalic acid. Process Biochem 59:84–90. https://doi.org/10.1016/j.procbio.2016.07.023

CAS  Article  Google Scholar 

Chandra R, Chowdhary P (2015) Properties of bacterial laccases and their application in bioremediation of industrial wastes. Environ Sci Process Impacts 17:326–342. https://doi.org/10.1039/c4em00627e

CAS  Article  Google Scholar 

Chen S, Su L, Chen J, Wu J (2013) Cutinase: characteristics, preparation, and application. Biotechnol Adv 31:1754–1767. https://doi.org/10.1016/j.biotechadv.2013.09.005

CAS  Article  Google Scholar 

Chen CC, Han X, Ko TP et al (2018) Structural studies reveal the molecular mechanism of PETase. FEBS J 285:3717–3723. https://doi.org/10.1111/febs.14612

CAS  Article  Google Scholar 

Chen CC, Dai L, Ma L, Guo RT (2020) Enzymatic degradation of plant biomass and synthetic polymers. Nat Rev Chem 4:114–116. https://doi.org/10.1038/s41570-020-0163-6

Article  Google Scholar 

Cowan AR, Costanzo CM, Benham R et al (2022) Fungal bioremediation of polyethylene: Challenges and perspectives. J Appl Microbiol 132:78–89. https://doi.org/10.1111/jam.15203

CAS  Article  Google Scholar 

Cui Y, Chen Y, Liu X et al (2021) Computational redesign of a PETase for plastic biodegradation under ambient condition by the GRAPE strategy. ACS Catal 11:1340–1350. https://doi.org/10.1021/acscatal.0c05126

CAS  Article  Google Scholar 

Danso D, Schmeisser C, Chow J et al (2018) New insights into the function and global distribution of polyethylene terephthalate (PET)-degrading bacteria and enzymes in marine and terrestrial metagenomes. Appl Environ Microbiol 53:1689–1699. https://doi.org/10.1128/AEM.02773-17

Article  Google Scholar 

Danso D, Chow J, Streit WR (2019) Plastics: environmental and biotechnological perspectives on microbial degradation. Appl Environ Microbiol 85:e01095-e1119. https://doi.org/10.1128/AEM.01095-19

CAS  Article  Google Scholar 

Deguchi T, Kitaoka Y, Kakezawa M, Nishida T (1998) Purification and characterization of a nylon-degrading enzyme. Appl Environ Microbiol 64:1366–1371. https://doi.org/10.1128/aem.64.4.1366-1371.1998

do Canto VP, Thompson CE, Netz PA (2019) Polyurethanases: Three-dimensional structures and molecular dynamics simulations of enzymes that degrade polyurethane. J Mol Graph Model 89:82–95. https://doi.org/10.1016/j.jmgm.2019.03.001

CAS  Article  Google Scholar 

Du J, Zhang F, Li Y et al (2014) Enzymatic liquefaction and saccharification of pretreated corn stover at high-solids concentrations in a horizontal rotating bioreactor. Bioprocess Biosyst Eng 37:173–181. https://doi.org/10.1007/s00449-013-0983-6

CAS  Article  Google Scholar 

Ece S, Lambertz C, Fischer R, Commandeur U (2017) Heterologous expression of a Streptomyces cyaneus laccase for biomass modification applications. AMB Express 7:86. https://doi.org/10.1186/s13568-017-0387-0

CAS  Article  Google Scholar 

Eibes G, López C, Moreira MT et al (2007) Strategies for the design and operation of enzymatic reactors for the degradation of highly and poorly soluble recalcitrant compounds. Biocatal Biotransform 25:260–268. https://doi.org/10.1080/10242420701444371

CAS  Article  Google Scholar 

Ellis LD, Rorrer NA, Sullivan KP et al (2021) Chemical and biological catalysis for plastics recycling and upcycling. Nat Catal 4:539–556. https://doi.org/10.1038/s41929-021-00648-4

CAS  Article  Google Scholar 

Falkenstein P, Gräsing D, Bielytskyi P et al (2020) UV pretreatment impairs the enzymatic degradation of polyethylene terephthalate. Front Microbiol 11:689. https://doi.org/10.3389/fmicb.2020.00689

Article  Google Scholar 

Fei X, Fei X, Fei X et al (2020) Biobased poly(ethylene 2,5-furancoate): no longer an alternative, but an irreplaceable polyester in the polymer industry. ACS Sustain Chem Eng 8:8471–8485. https://doi.org/10.1021/acssuschemeng.0c01862

CAS  Article  Google Scholar 

Ferreira RDG, Azzoni AR, Freitas S (2018) Techno-economic analysis of the industrial production of a low-cost enzyme using E. coli: the case of recombinant β-glucosidase. Biotechnol Biofuels 11:81. https://doi.org/10.1186/s13068-018-1077-0

CAS  Article  Google Scholar 

Fincher EL, Payne WJ (1962) Bacterial utilization of ether glycols. Appl Microbiol 10:542–547. https://doi.org/10.1128/aem.10.6.542-547.1962

CAS  Article  Google Scholar 

Frank R, Krinke D, Sonnendecker C et al (2022) Real-time noninvasive analysis of biocatalytic PET degradation. ACS Catal 12:25–35. https://doi.org/10.1021/acscatal.1c03963

CAS  Article  Google Scholar 

Fujisawa M, Hirai H, Nishida T (2001) Degradation of polyethylene and nylon-66 by the laccase-mediator system. J Polym Environ 103–108. https://doi.org/10.1023/A:1020472426516

Gamerith C, Vastano M, Ghorbanpour SM et al (2017) Enzymatic degradation of aromatic and aliphatic polyesters by P. pastoris expressed cutinase 1 from Thermobifida cellulosilytica. Front Microbiol 8:938. https://doi.org/10.3389/fmicb.2017.00938

García-Aguirre M, Sáenz-Álvaro VA, Rodríguez-Soto MA et al (2009) Strategy for biotechnological process design applied to the enzymatic hydrolysis of agave fructo-oligosaccharides to obtain fructose-rich syrups. J Agric Food Chem 57:10205–10210. https://doi.org/10.1021/jf902855q

CAS  Article  Google Scholar 

Gaston LW, Stadtman ER (1963) Fermentation of ethylene glycol by Clostridium glycolicum, sp. n. J Bacteriol 85:356–362. https://doi.org/10.1128/jb.85.2.356-362.1963

CAS  Article  Google Scholar 

Gewert B, Plassmann MM, Macleod M (2015) Pathways for degradation of plastic polymers floating in the marine environment. Environ Sci Process Impacts 17:1513–1521. https://doi.org/10.1039/C5EM00207A

CAS  Article  Google Scholar 

Gomes DS, Matamá T, Cavaco-Paulo A et al (2013) Production of heterologous cutinases by E. coli and improved enzyme formulation for application on plastic degradation. Electron J Biotechnol 16:1–14. https://doi.org/10.2225/vol16issue5-fulltext-12

CAS  Article  Google Scholar 

Gricajeva A, Nadda AK, Gudiukaite R (2022) Insights into polyester plastic biodegradationby carboxyl ester hydrolases. J Chem Technol Biotechnol 97:359–380. https://doi.org/10.1002/jctb.6745

CAS  Article  Google Scholar 

Guadix-Montero S, Sankar M (2018) Review on catalytic cleavage of C-C inter-unit linkages in lignin model compounds: towards lignin depolymerisation. Top Catal 61:183–198. https://doi.org/10.1007/s11244-018-0909-2

CAS  Article  Google Scholar 

Han X, Liu W

留言 (0)

沒有登入
gif