Silence of S1PR4 Represses the Activation of Fibroblast-like Synoviocytes by Regulating IL-17/STAT3 Signaling Pathway

Zhou, D.J., et al. 2020. Driving ability and safety in rheumatoid arthritis: A systematic review. Arthritis Care Res (Hoboken). https://doi.org/10.1002/acr.24137.

Article  Google Scholar 

Zhao, S.S., H. Lyu, D.H. Solomon, and K. Yoshida. 2020. Improving rheumatoid arthritis comparative effectiveness research through causal inference principles: Systematic review using a target trial emulation framework. Annals of the Rheumatic Diseases 79: 883–890. https://doi.org/10.1136/annrheumdis-2020-217200.

Article  PubMed  Google Scholar 

Zafari, P., et al. 2020. Asymmetric and symmetric dimethylarginine concentration as an indicator of cardiovascular diseases in rheumatoid arthritis patients: A systematic review and meta-analysis of case-control studies. Clinical Rheumatology 39: 127–134. https://doi.org/10.1007/s10067-019-04713-z.

Article  PubMed  Google Scholar 

Wang, Z., Bao, H.W. and Y.A., Ji. 2020. systematic review and meta-analysis of rituximab combined with methotrexate versus methotrexate alone in the treatment of rheumatoid arthritis. Medicine (Baltimore) 99: e19193.https://doi.org/10.1097/MD.0000000000019193.

Zhang, L., P. Cai, and W. Zhu. 2020. Depression has an impact on disease activity and health-related quality of life in rheumatoid arthritis: A systematic review and meta-analysis. International Journal of Rheumatic Diseases 23: 285–293. https://doi.org/10.1111/1756-185X.13774.

Article  PubMed  Google Scholar 

Wang, H., X., Li, and G. Gong. 2020. Cardiovascular outcomes in patients with co-existing coronary artery disease and rheumatoid arthritis: A systematic review and meta-analysis. Medicine (Baltimore) 99: e19658. https://doi.org/10.1097/MD.0000000000019658.

Vasconcelos, L.B., M.T. Silva, and T.F. Galvao. 2020. Reduction of biologics in rheumatoid arthritis: A systematic review and meta-analysis. Rheumatology International. https://doi.org/10.1007/s00296-020-04651-z.

Article  PubMed  Google Scholar 

Silvagni, E., et al. 2020. One year in review 2020: Novelties in the treatment of rheumatoid arthritis. Clinical and Experimental Rheumatology 38: 181–194.

Article  Google Scholar 

Dietze, A., B. Engesaeter, and K. Berg. 2005. Transgene delivery and gelonin cytotoxicity enhanced by photochemical internalization in fibroblast-like synoviocytes (FLS) from rheumatoid arthritis patients. Photochemical & Photobiological Sciences 4: 341–347. https://doi.org/10.1039/b416521g.

CAS  Article  Google Scholar 

Kraan, M.C., et al. 2004. T cells, fibroblast-like synoviocytes, and granzyme B+ cytotoxic cells are associated with joint damage in patients with recent onset rheumatoid arthritis. Annals of the Rheumatic Diseases 63: 483–488. https://doi.org/10.1136/ard.2003.009225.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Zhai, K.F., et al. 2017. Protective effects of paeonol on inflammatory response in IL-1beta-induced human fibroblast-like synoviocytes and rheumatoid arthritis progression via modulating NF-kappaB pathway. Inflammopharmacology. https://doi.org/10.1007/s10787-017-0385-5.

Article  PubMed  Google Scholar 

Zhu, L., and L. Zhu. 2017. Sophocarpine suppress inflammatory response in human fibroblast-like synoviocytes and in mice with collagen-induced arthritis. European Cytokine Network 28: 120–126. https://doi.org/10.1684/ecn.2017.0400.

CAS  Article  PubMed  Google Scholar 

Agonia, I., et al. 2020. IL-17, IL-21 and IL-22 polymorphisms in rheumatoid arthritis: A systematic review and meta-analysis. Cytokine 125: 154813. https://doi.org/10.1016/j.cyto.2019.154813.

CAS  Article  PubMed  Google Scholar 

Yang, P., et al. 2019. Th17 cell pathogenicity and plasticity in rheumatoid arthritis. Journal of Leukocyte Biology 106: 1233–1240. https://doi.org/10.1002/JLB.4RU0619-197R.

CAS  Article  PubMed  Google Scholar 

Mohammadi, F.S., et al. 2019. Are genetic variations in IL-21-IL-23R-IL-17A cytokine axis involved in a pathogenic pathway of rheumatoid arthritis? Bayesian hierarchical meta-analysis. Journal Cell Physiology 234: 17159–17171. https://doi.org/10.1002/jcp.28495.

CAS  Article  Google Scholar 

Taams, L.S. 2020. Interleukin-17 in rheumatoid arthritis: trials and tribulations. The Journal of Experimental Medicine 217. https://doi.org/10.1084/jem.20192048.

van Hamburg, J.P., and S.W. Tas. 2018. Molecular mechanisms underpinning T helper 17 cell heterogeneity and functions in rheumatoid arthritis. Journal of Autoimmunity 87: 69–81. https://doi.org/10.1016/j.jaut.2017.12.006.

CAS  Article  PubMed  Google Scholar 

Agarwal, S., R. Misra, and A. Aggarwal. 2010. Induction of metalloproteinases expression by TLR ligands in human fibroblast like synoviocytes from juvenile idiopathic arthritis patients. Indian Journal of Medical Research 131: 771–779.

CAS  PubMed  Google Scholar 

Samarpita, S., R. Ganesan, and M. Rasool. 2020. Cyanidin prevents the hyperproliferative potential of fibroblast-like synoviocytes and disease progression via targeting IL-17A cytokine signalling in rheumatoid arthritis. Toxicology and Applied Pharmacology 391: 114917. https://doi.org/10.1016/j.taap.2020.114917.

CAS  Article  PubMed  Google Scholar 

Chen, S., et al. 2020. Interleukin 17A and IL-17F expression and functional responses in rheumatoid arthritis and peripheral spondyloarthritis. Journal of Rheumatology 47: 1606–1613. https://doi.org/10.3899/jrheum.190571.

CAS  Article  PubMed  Google Scholar 

Lee, S.Y., et al. 2014. Interleukin-17 increases the expression of Toll-like receptor 3 via the STAT3 pathway in rheumatoid arthritis fibroblast-like synoviocytes. Immunology 141: 353–361. https://doi.org/10.1111/imm.12196.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Lao, M., et al. 2016. Protein Inhibitor of activated STAT3 regulates migration, invasion, and activation of fibroblast-like synoviocytes in rheumatoid arthritis. The Journal of Immunology 196: 596–606. https://doi.org/10.4049/jimmunol.1403254.

CAS  Article  PubMed  Google Scholar 

Olesch, C., C. Ringel, B. Brune, and A. Weigert. 2017. Beyond immune cell migration: The emerging role of the sphingosine-1-phosphate receptor S1PR4 as a modulator of innate immune cell activation. Mediators of Inflammation 2017: 6059203. https://doi.org/10.1155/2017/6059203.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Xiong, Y., et al. 2019. CD4 T cell sphingosine 1-phosphate receptor (S1PR)1 and S1PR4 and endothelial S1PR2 regulate afferent lymphatic migration. Science Immunology 4. https://doi.org/10.1126/sciimmunol.aav1263.

Schuster, C., et al. 2020. S1PR4-dependent CCL2 production promotes macrophage recruitment in a murine psoriasis model. European Journal of Immunology 50: 839–845. https://doi.org/10.1002/eji.201948349.

CAS  Article  PubMed  Google Scholar 

Olesch, C., et al. 2020. S1PR4 ablation reduces tumor growth and improves chemotherapy via CD8+ T cell expansion. The Journal of Clinical Investigation. https://doi.org/10.1172/JCI136928.

Article  PubMed  PubMed Central  Google Scholar 

Burg, N., J.E. Salmon, and T. Hla. 2022. Sphingosine 1-phosphate receptor-targeted therapeutics in rheumatic diseases. Nature Reviews Rheumatology 18: 335–351. https://doi.org/10.1038/s41584-022-00784-6.

CAS  Article  PubMed  Google Scholar 

Wang, M., et al. 2021. Inhibition of sphingosine 1-phosphate (S1P) receptor 1/2/3 ameliorates biological dysfunction in rheumatoid arthritis fibroblast-like synoviocyte MH7A cells through Galphai/Galphas rebalancing. Clinical and Experimental Pharmacology and Physiology 48: 1080–1089. https://doi.org/10.1111/1440-1681.13460.

CAS  Article  PubMed  Google Scholar 

Kalden, J.R., and H. Schulze-Koops. 2017. Immunogenicity and loss of response to TNF inhibitors: Implications for rheumatoid arthritis treatment. Nature Reviews Rheumatology 13: 707–718. https://doi.org/10.1038/nrrheum.2017.187.

CAS  Article  PubMed  Google Scholar 

Bonelli, M., et al. 2019. IRF1 is critical for the TNF-driven interferon response in rheumatoid fibroblast-like synoviocytes: JAKinibs suppress the interferon response in RA-FLSs. Experimental & Molecular Medicine 51: 75. https://doi.org/10.1038/s12276-019-0267-6.

CAS  Article  Google Scholar 

Sun, M., et al. 2020. Sphingosine kinase 1/sphingosine 1-phosphate/sphingosine 1-phosphate receptor 1 pathway: A novel target of geniposide to inhibit angiogenesis. Life Sciences 256: 117988. https://doi.org/10.1016/j.lfs.2020.117988.

CAS  Article  PubMed  Google Scholar 

Inoue, T., et al. 2019. Upregulation of sphingosine-1-phosphate receptor 3 on fibroblast-like synoviocytes is associated with the development of collagen-induced arthritis via increased interleukin-6 production. PLoS ONE 14: e0218090. https://doi.org/10.1371/journal.pone.0218090.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Perez-Jeldres, T., M. Alvarez-Lobos, and J. Rivera-Nieves. 2021. Targeting sphingosine-1-phosphate signaling in immune-mediated diseases: Beyond multiple sclerosis. Drugs 81: 985–1002. https://doi.org/10.1007/s40265-021-01528-8.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Bigaud, M., et al. 2016. Pathophysiological consequences of a break in S1P1-dependent homeostasis of vascular permeability revealed by S1P1 competitive antagonism. PLoS ONE 11: e0168252. https://doi.org/10.1371/journal.pone.0168252.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Lee, C.F., et al. 2019. Activation of sphingosine kinase by lipopolysaccharide promotes prostate cancer cell invasion and metastasis via SphK1/S1PR4/matriptase. Oncogene 38: 5580–5598. https://doi.org/10.1038/s41388-019-0833-3.

CAS  Article  PubMed  Google Scholar 

Hong, C.H., et al. 2022. Sphingosine 1-phosphate receptor 4 promotes nonalcoholic steatohepatitis by activating NLRP3 inflammasome. Cellular and Molecular Gastroenterology and Hepatology 13: 925–947. https://doi.org/10.1016/j.jcmgh.2021.12.002.

Article  PubMed  Google Scholar 

Dillmann, C., J. Mora, C. Olesch, B. Brune, and A. Weigert. 2015. S1PR4 is required for plasmacytoid dendritic cell differentiation. Biological Chemistry 396: 775–782. https://doi.org/10.1515/hsz-2014-0271.

CAS  Article  PubMed  Google Scholar 

Suh, J.H., et al. 2018. Sphingosine-1-phosphate signaling and metabolism gene signature in pediatric inflammatory bowel disease: A matched-case control pilot study. Inflammatory Bowel Diseases 24: 1321–1334. https://doi.org/10.1093/ibd/izy007.

Article  PubMed  PubMed Central  Google Scholar 

Zhang, J., et al. 2019. Profibrotic effect of IL-17A and elevated IL-17RA in idiopathic pulmonary fibrosis and rheumatoid arthritis-associated lung disease support a direct role for IL-17A/IL-17RA in human fibrotic interstitial lung disease. American Journal of Physiology. Lung Cellular and Molecular Physiology 316: L487–L497. https://doi.org/10.1152/ajplung.00301.2018.

CAS  Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif