Time-Restricted Eating in Metabolic Syndrome–Focus on Blood Pressure Outcomes

Ford ES. Risks for all-cause mortality, cardiovascular disease, and diabetes associated with the metabolic syndrome: a summary of the evidence. Diabetes Care. 2005;28(7):1769–78. https://doi.org/10.2337/DIACARE.28.7.1769.

Article  PubMed  Google Scholar 

Alberti KGMM, Eckel RH, Grundy SM, et al. Harmonizing the metabolic syndrome. Circulation. 2009;120(16):1640–5. https://doi.org/10.1161/CIRCULATIONAHA.109.192644.

CAS  Article  PubMed  Google Scholar 

Hirode G, Wong RJ. Trends in the prevalence of metabolic syndrome in the United States, 2011–2016. JAMA. 2020;323(24):2526–8. https://doi.org/10.1056/nejmsr2005760.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Kahn R, Buse J, Ferrannini E, Stern M. The metabolic syndrome: time for a critical appraisal joint statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care. 2005;28(9):2289–304. https://doi.org/10.2337/DIACARE.28.9.2289.

Article  PubMed  Google Scholar 

American College of Cardiology/American Heart Association Task Force on Practice Guidelines, Obesity Expert Panel 2013. Expert panel report: Guidelines (2013) for the management of overweight and obesity in adults. Obesity. 2014;22(S2):S41-S410. https://doi.org/10.1002/OBY.20660.

Chaix A, Zarrinpar A, Miu P, Panda S. Time-restricted feeding is a preventative and therapeutic intervention against diverse nutritional challenges. Cell Metab. 2014;20:991–1005.

CAS  Article  Google Scholar 

Hatori M, Vollmers C, Zarrinpar A, et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab. 2012;15:848–60.

CAS  Article  Google Scholar 

•• Manoogian ENC, Chow LS, Taub PR, Laferrère B, Panda S. Time-restricted eating for the prevention and management of metabolic diseases. Endoc Rev. 2021;XX(Xx):1–32. https://doi.org/10.1210/endrev/bnab027 .Comprehensive review of recent preclinical and human studies of time-restricted eating on cardiometabolic diseases.

Thomas EA, Zaman A, Sloggett KJ, et al. Early time-restricted eating compared with daily caloric restriction: a randomized trial in adults with obesity. Obesity. 2022;30(5):1027–38. https://doi.org/10.1002/OBY.23420.

CAS  Article  PubMed  Google Scholar 

• Liu D, Huang Y, Huang C, et al. Calorie restriction with or without time-restricted eating in weight loss. N Engl J Med. 2022;386(16):1495–504. https://doi.org/10.1056/NEJMOA2114833. This was the largest and longest randomized controlled trial of time-restricted eating in adults with obesity to date. This study found that there was no additional benefit of time-restricted eating in the absence of caloric restriction on weight loss and other metabolic risk factors including blood pressure.

CAS  Article  PubMed  Google Scholar 

Ohkubo T, Imai Y, Tsuji I, et al. Relation between nocturnal decline in blood pressure and mortality: The Ohasama study. Am J Hypertens. 1997;10(11):1201–7. https://doi.org/10.1016/S0895-7061(97)00274-4/2/AJH.1201.F3.JPEG.

CAS  Article  PubMed  Google Scholar 

Fagard RH, Thijs L, Staessen JA, Clement DL, De Buyzere ML, De Bacquer DA. Night–day blood pressure ratio and dipping pattern as predictors of death and cardiovascular events in hypertension. J Human Hyperten. 2009;23(10):645–653. https://doi.org/10.1038/jhh.2009.9.

Taylor KS, Heneghan CJ, Stevens RJ, Adams EC, Nunan D, Ward A. Heterogeneity of prognostic studies of 24-hour blood pressure variability: systematic review and meta-analysis. PLoS ONE. 2015;10(5): e0126375. https://doi.org/10.1371/JOURNAL.PONE.0126375.

Article  PubMed  PubMed Central  Google Scholar 

Weber MA, Drayer JIM, Nakamura DK, Wyle FA. The circadian blood pressure pattern in ambulatory normal subjects. Am J Cardiol. 1984;54(1):115–9. https://doi.org/10.1016/0002-9149(84)90314-X.

CAS  Article  PubMed  Google Scholar 

Degaute JP, Van De Borne P, Linkowski P, Van Cauter E. Quantitative analysis of the 24-hour blood pressure and heart rate patterns in young men. Hypertension. 1991;18(2):199–210. https://doi.org/10.1161/01.HYP.18.2.199.

CAS  Article  PubMed  Google Scholar 

Shea SA, Hilton MF, Hu K, Scheer FAJL. Existence of an endogenous circadian blood pressure rhythm in humans that peaks in the evening. Circ Res. 2011;108(8):980–4. https://doi.org/10.1161/CIRCRESAHA.110.233668.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Scheer FAJL, Hu K, Evoniuk H, et al. Impact of the human circadian system, exercise, and their interaction on cardiovascular function. Proc Natl Acad Sci USA. 2010;107(47):20541–6. https://doi.org/10.1073/PNAS.1006749107/-/DCSUPPLEMENTAL.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Mills JN, Stanbury SW. Persistent 24-hour renal excretory rhythm on a 12-hour cycle of activity. J Physiol. 1952;117(1):22–37. https://doi.org/10.1113/JPHYSIOL.1952.SP004730.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Moore-Ede MC, Kass DA, Herd JA. Transient circadian internal desynchronization after light-dark phase shift in monkeys. Am J Physiol. 1977;232(1):R31–7.

CAS  PubMed  Google Scholar 

Kamperis K, Hagstroem S, Radvanska E, Rittig S, Djurhuus JC. Excess diuresis and natriuresis during acute sleep deprivation in healthy adults. Am Physiol Renal Physiol. 2010;299(2):F404–11. https://doi.org/10.1152/ajprenal.00126.2010.

CAS  Article  PubMed  Google Scholar 

Richards J, Cheng KY, All S, et al. A role for the circadian clock protein Per1 in the regulation of aldosterone levels and renal Na+ retention. Am Physiol Renal Physiol. 2013;305(12):1697–704. https://doi.org/10.1152/AJPRENAL.00472.2013/ASSET/IMAGES/LARGE/ZH20011471490008.JPEG.

Article  Google Scholar 

Nikolaeva S, Pradervand S, Centeno G, et al. The circadian clock modulates renal sodium handling. J Am Soc Nephrol. 2012;23(6):1019–26. https://doi.org/10.1681/ASN.2011080842.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Zubera AM, Centenoa G, Pradervandb S, et al. Molecular clock is involved in predictive circadian adjustment of renal function. Proc Natl Acad Sci USA. 2009;106(38):16523–8. https://doi.org/10.1073/PNAS.0904890106.

Article  Google Scholar 

Gumz ML, Stow LR, Lynch IJ, et al. The circadian clock protein Period 1 regulates expression of the renal epithelial sodium channel in mice. J Clin Investig. 2009;119(8):2423–34. https://doi.org/10.1172/JCI36908.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Doi M, Takahashi Y, Komatsu R, et al. Salt-sensitive hypertension in circadian clock-deficient Cry-null mice involves dysregulated adrenal Hsd3b6. Nat Med. 2010;16(1):67–74. https://doi.org/10.1038/NM.2061

Chalmers JA, Martino TA, Tata N, Ralph MR, Sole MJ, Belsham DD. Vascular circadian rhythms in a mouse vascular smooth muscle cell line (Movas-1). Am J Physiol Renal Physiol. 2008;295(5):1529–38. https://doi.org/10.1152/AJPREGU.90572.2008/SUPPL_FILE/FIGS3.PDF.

Article  Google Scholar 

Xie Z, Su W, Liu S, et al. Smooth-muscle BMAL1 participates in blood pressure circadian rhythm regulation. J Clin Investig. 2015;125(1):324–36. https://doi.org/10.1172/JCI76881.

Article  PubMed  Google Scholar 

Talan MI, Engel BT, Kawate R. Overnight increases in haematocrit: additional evidence for a nocturnal fall in plasma volume. Acta Physiol Scand. 1992;144(4):473–6. https://doi.org/10.1111/J.1748-1716.1992.TB09323.X.

CAS  Article  PubMed  Google Scholar 

Van Someren EJW. More than a marker: Interaction between the circadian regulation of temperature and sleep, age-related changes, and treatment possibilities. Chronobiol Int. 2000;17(3):313–54. https://doi.org/10.1081/CBI-100101050.

Article  PubMed  Google Scholar 

Sindrup JH, Kastrup J, Christensen H, Jorgensen B. Nocturnal variations in peripheral blood flow, systemic blood pressure, and heart rate in humans. Am J Physiol. 1991;261(4 30–4). https://doi.org/10.1152/AJPHEART.1991.261.4.H982.

Coccagna G, Mantovani M, Brignani F, Manzini A, Lugaresi E. Arterial pressure changes during spontaneous sleep in man. Electroencephalogr Clin Neurophysiol. 1971;31(3):277–81. https://doi.org/10.1016/0013-4694(71)90098-8.

CAS  Article  PubMed  Google Scholar 

Andersson B, Wallin G, Hedner T, Ahlberg AC, Andersson OK. Acute Effects of Short-term Fasting on Blood Pressure, Circulating Noradrenaline and Efferent Sympathetic Nerve Activity. Acta Med Scand. 1988;223(6):485–90. https://doi.org/10.1111/J.0954-6820.1988.TB17685.X.

CAS  Article  PubMed  Google Scholar 

Grundler F, Mesnage R, Michalsen A, de Toledo FW. Blood pressure changes in 1610 subjects with and without antihypertensive medication during long-term fasting. J Am Heart Assoc. 2020;9(23):18649. https://doi.org/10.1161/JAHA.120.018649.

Article  Google Scholar 

Schloeder FX, Stinebaugh BJ. Renal tubular sites of natriuresis of fasting and glucose-induced sodium conservation. Metabolism. 1970;19(12).

Kraikitpanitch S, Chrysant SG, Lindeman RD. Natriuresis and carbohydrate-induced antinatriuresis in fasted, hydrated hypertensives: Proceedings of the Society of Experimental Biology and Medicine. 1975;149:319–24. https://doi.org/10.3181/00379727-149-38798.

CAS  Article  Google Scholar 

DeFronzo RA. The effect of insulin on renal sodium metabolism. Diabetologia. 1981;21(3):165–71. https://doi.org/10.1007/bf00252649.

CAS  Article  PubMed  Google Scholar 

DeFronzo RA, Cooke CR, Andres R, Faloona GR, Davis PJ. The effect of insulin on renal handling of sodium, potassium, calcium, and phosphate in man. J Clin Investig. 1975;55(4):845–55. https://doi.org/10.1172/JCI107996.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Arnqvist HJ, Bornfeldt KE, Chen Y, Lindström T. The insulin-like growth factor system in vascular smooth muscle: Interaction with insulin and growth factors. Metabolism. 1995;44(SUPPL. 4):58–66. https://doi.org/10.1016/0026-0495(95)90222-8.

CAS  Article  PubMed  Google Scholar 

Nickenig G, Röling J, Strehlow K, Schnabel P, Böhm M. Insulin induces upregulation of vascular receptor gene expression by posttranscriptional mechanisms. Circulation. 1998;98(22):2453–60. https://doi.org/10.1161/01.CIR.98.22.2453.

CAS  Article  PubMed  Google Scholar 

Bhanot S, McNeill JH. Insulin and hypertension: a causal relationship? Cardiovasc Res. 1996;31(2):212–21. https://doi.org/10.1016/0008-6363(95)00218-9.

CAS  Article  PubMed  Google Scholar 

Ohishi M. Hypertension with diabetes mellitus: physiology and pathology review-article. Hypertens Res. 2018;41(6):389–93. https://doi.org/10.1038/s41440-018-0034-4.

Article  PubMed  Google Scholar 

Heise T, Magnusson K, Heinemann L, Sawicki PT. Insulin resistance and the effect of insulin on blood pressure in essential hypertension. Hypertension (Dallas, Tex : 1979). 1998;32(2):243–248. https://d

留言 (0)

沒有登入
gif