Development and experimental verification of a prognosis model for cuproptosis-related subtypes in HCC

Villanueva A. Hepatocellular carcinoma. N Engl J Med 2019;380(15):1450–1462

CAS  Article  Google Scholar 

Piñero F, Dirchwolf M, Pessôa MG. Biomarkers in hepatocellular carcinoma: diagnosis, prognosis and treatment response assessment. Cells 2020;9(6):1370

Article  Google Scholar 

Tsvetkov P, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science 2022;375(6586):1254–1261

CAS  Article  Google Scholar 

Bock FJ, Tait SWG. Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol 2020;21(2):85–100

CAS  Article  Google Scholar 

Zischka H, et al. Liver mitochondrial membrane crosslinking and destruction in a rat model of Wilson disease. J Clin Invest 2011;121(4):1508–1518

Article  Google Scholar 

Oliveri V. Selective targeting of cancer cells by copper ionophores: an overview. Front Mol Biosci 2022;9: 841814

CAS  Article  Google Scholar 

Tang D, Chen X, Kroemer G. Cuproptosis: a copper-triggered modality of mitochondrial cell death. Cell Res 2022;32:417–418

Article  Google Scholar 

Chandrashekar DS, et al. UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia 2017;19(8):649–658

CAS  Article  Google Scholar 

Papatheodorou I, et al. Expression Atlas update: from tissues to single cells. Nucleic Acids Res 2020;48(D1):D77–D83

CAS  PubMed  Google Scholar 

Menyhárt O, Nagy Á, Győrffy B. Determining consistent prognostic biomarkers of overall survival and vascular invasion in hepatocellular carcinoma. R Soc Open Sci 2018;5(12):181006

Article  Google Scholar 

Newman AM, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods 2015;12(5):453–457

CAS  Article  Google Scholar 

Rooney MS, et al. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 2015;160(1–2):48–61

CAS  Article  Google Scholar 

Iasonos A, et al. How to build and interpret a nomogram for cancer prognosis. J Clin Oncol 2008;26(8):1364–1370

Article  Google Scholar 

Xu LX, et al. Genomic and transcriptional heterogeneity of multifocal hepatocellular carcinoma. Ann Oncol 2019;30(6):990–997

CAS  Article  Google Scholar 

Aubert L, et al. Copper bioavailability is a KRAS-specific vulnerability in colorectal cancer. Nat Commun 2020;11(1):3701

CAS  Article  Google Scholar 

Michniewicz F, et al. Copper: an intracellular achilles’ heel allowing the targeting of epigenetics, kinase pathways, and cell metabolism in cancer therapeutics. ChemMedChem 2021;16(15):2315–2329

CAS  Article  Google Scholar 

Chen F, et al. Serum copper and zinc levels and the risk of oral cancer: A new insight based on large-scale case-control study. Oral Dis 2019;25(1):80–86

Article  Google Scholar 

Saleh SAK, et al. Serum levels of selenium, zinc, copper, manganese, and iron in prostate cancer patients. Curr Urol 2020;14(1):44–49

CAS  Article  Google Scholar 

Mossmann D, Park S, Hall MN. mTOR signalling and cellular metabolism are mutual determinants in cancer. Nat Rev Cancer 2018;18(12):744–757

CAS  Article  Google Scholar 

Yu M, et al. PLCγ-dependent mTOR signalling controls IL-7-mediated early B cell development. Nat Commun 2017;8(1):1457

Article  Google Scholar 

Percival SS. Copper and immunity. Am J Clin Nutr 1998;67(5 Suppl):1064s–1068s

CAS  Article  Google Scholar 

Djoko KY, et al. The role of copper and zinc toxicity in innate immune defense against bacterial pathogens. J Biol Chem 2015;290(31):18954–18961

CAS  Article  Google Scholar 

Zhang Z, et al. Gasdermin E suppresses tumour growth by activating anti-tumour immunity. Nature 2020;579(7799):415–420

CAS  Article  Google Scholar 

Vivier E, et al. Targeting natural killer cells and natural killer T cells in cancer. Nat Rev Immunol 2012;12(4):239–252

CAS  Article  Google Scholar 

Kondratova M, et al. A multiscale signalling network map of innate immune response in cancer reveals cell heterogeneity signatures. Nat Commun 2019;10(1):4808

Article  Google Scholar 

Ludewig B, et al. Protective antiviral cytotoxic T cell memory is most efficiently maintained by restimulation via dendritic cells. J Immunol 1999;163(4):1839–1844

CAS  PubMed  Google Scholar 

Wherry EJ, et al. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat Immunol 2003;4(3):225–234

CAS  Article  Google Scholar 

Klebanoff CA, et al. Central memory self/tumor-reactive CD8+ T cells confer superior antitumor immunity compared with effector memory T cells. Proc Natl Acad Sci USA 2005;102(27):9571–9576

CAS  Article  Google Scholar 

van Panhuys N, et al. Effector lymphoid tissue and its crucial role in protective immunity. Trends Immunol 2005;26(5):242–247

Article  Google Scholar 

Cao J, et al. Screening and identifying immune-related cells and genes in the tumor microenvironment of bladder urothelial carcinoma: based on TCGA Database and Bioinformatics. Front Oncol 2019;9:1533

Article  Google Scholar 

Saito T, et al. Two FOXP3(+)CD4(+) T cell subpopulations distinctly control the prognosis of colorectal cancers. Nat Med 2016;22(6):679–684

CAS  Article  Google Scholar 

留言 (0)

沒有登入
gif