The CeO2–TiO2 composite material for improving response speed of detecting low-concentration formaldehyde

Bejaoui A, Guerin J, Aguir K (2013) Modeling of a p-type resistive gas sensor in the presence of a reducing gas. Sens Actuators B Chem 181:340–347. https://doi.org/10.1016/j.snb.2013.01.018

CAS  Article  Google Scholar 

Buravets V et al (2021) Surface sensitivity of hydrogen evolution and formaldehyde reduction on differently oriented TiO2 anatase nanocrystals. Electrocatalysis 12(1):15. https://doi.org/10.1007/s12678-020-00595-x

CAS  Article  Google Scholar 

Cao T et al (2020a) Morphology-dependent CeO2 catalysis in acetylene semihydrogenation reaction. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2019.144120

Article  Google Scholar 

Cao C-T et al (2020b) Relationship investigation between C(sp 2)-X and C(sp 3)-X bond energies based on substituted benzene and methane. ACS Omega 5(30):19304–19311. https://doi.org/10.1021/acsomega.0c02964

CAS  Article  Google Scholar 

Cao J et al (2021) Electronic structure-dependent formaldehyde gas sensing performance of the In2O3/Co3O4 core/shell hierarchical heterostructure sensors. J Colloid Interface Sci 577:19–28. https://doi.org/10.1016/j.jcis.2020.05.028

CAS  Article  Google Scholar 

Carraro G et al (2022) Adsorption of glutamic acid on clean and hydroxylated rutile TiO2(110): an XPS and NEXAFS investigation. J Phys Condens Matter 34(27):274001. https://doi.org/10.1088/1361-648X/ac62a6

Article  Google Scholar 

Deng L et al (2012) Visible-light activate mesoporous WO3 sensors with enhanced formaldehyde-sensing property at room temperature. Sens Actuators B Chem 163(1):260–266. https://doi.org/10.1016/j.snb.2012.01.049

CAS  Article  Google Scholar 

Filipovic L (2021) Reliability and stability of MEMS microheaters for gas sensors. In: 2021 IEEE International integrated reliability workshop (IIRW), Integrated Reliability Workshop (IIRW), 2021 IEEE International, pp. 1–10. https://doi.org/10.1109/IIRW53245.2021.9635162.

Filipovic L, Selberherr S (2019) Thermo-electro-mechanical simulation of semiconductor metal oxide gas sensors. Materials 12(15):2410. https://doi.org/10.3390/ma12152410

CAS  Article  Google Scholar 

Gayen A et al (2004) Ce1-xRhxO2-δ solid solution formation in combustion-synthesized Rh/CeO2 catalyst studied by XRD, TEM, XPS, and EXAFS. Chem Mater 16(11):2317–2328. https://doi.org/10.1021/cm040126l

CAS  Article  Google Scholar 

Grabchenko MV et al (2020) The role of metal–support interaction in Ag/CeO2 catalysts for CO and soot oxidation. Appl Catal B Environ. https://doi.org/10.1016/j.apcatb.2019.118148

Article  Google Scholar 

Greczynski G, Hultman L (2020) Compromising Science by Ignorant Instrument Calibration-Need to Revisit Half a Century of Published XPS Data. Angew Chem Int Ed Engl 59(13):5002–5006. https://doi.org/10.1002/anie.201916000

CAS  Article  Google Scholar 

Hawkes P (2017) C.B. Carter and D. B. Williams: Transmission electron microscopy, diffraction, imaging, and spectroscopy. J Mater Sci 52(6):2989–2994. https://doi.org/10.1007/s10853-016-0540-1

CAS  Article  Google Scholar 

Hu J et al (2018) Highly sensitive and ultra-fast gas sensor based on CeO2-loaded In2O3 hollow spheres for ppb-level hydrogen detection. Sens Actuators B Chem 257:124–135. https://doi.org/10.1016/j.snb.2017.10.139

CAS  Article  Google Scholar 

Hu J, Chen X, Zhang Y (2021) Batch fabrication of formaldehyde sensors based on LaFeO3 thin film with ppb-level detection limit. Sens Actuators B Chem. https://doi.org/10.1016/j.snb.2021.130738

Article  Google Scholar 

Huang W, Gao Y (2014) Morphology-dependent surface chemistry and catalysis of CeO2 nanocrystals. Catal Sci Technol 4(11):3772–3784. https://doi.org/10.1039/c4cy00679h

CAS  Article  Google Scholar 

Huang L, Ohuchi FS, Peng F (2009) “In situ” XPS study of band structures at Cu2O/TiO2 heterojunctions interface. Surf Sci 603(17):2825–2834. https://doi.org/10.1016/j.susc.2009.07.030

CAS  Article  Google Scholar 

Hussain S et al (2018) Unique polyhedron CeO2 nanostructures for superior formaldehyde gas-sensing performances. Ceram Int 44(16):19624–19630. https://doi.org/10.1016/j.ceramint.2018.07.212

CAS  Article  Google Scholar 

Jiang D et al (2015) Insights into the surface-defect dependence of photoreactivity over CeO2 nanocrystals with well-defined crystal facets. ACS Catal 5(8):4851–4858. https://doi.org/10.1021/acscatal.5b01128

CAS  Article  Google Scholar 

Jiang G et al (2021) Insight into the Ag-CeO2 interface and mechanism of catalytic oxidation of formaldehyde. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2021.149277

Article  Google Scholar 

Khamfoo K et al (2020) Formaldehyde sensor based on FSP-made AgOx-doped SnO2 nanoparticulate sensing films. Sens Actuators B Chem. https://doi.org/10.1016/j.snb.2020.127705

Article  Google Scholar 

Khojier K (2021) Preparation and investigation of Al-doped ZnO thin films as a formaldehyde sensor with extremely low detection limit and considering the effect of RH. Mater Sci Semicond Process. https://doi.org/10.1016/j.mssp.2020.105283

Article  Google Scholar 

Kong J et al (2020) Introduce oxygen vacancies into CeO2 catalyst for enhanced coke resistance during photothermocatalytic oxidation of typical VOCs. Appl Catal B. https://doi.org/10.1016/j.apcatb.2020.118755

Article  Google Scholar 

Liu F et al (2018) Oxygen vacancies enhanced HCHO oxidation on a novel NaInO2 supported Pt catalyst at room temperature. Chem Eng J 334:2283–2292. https://doi.org/10.1016/j.cej.2017.11.114

CAS  Article  Google Scholar 

Liu J et al (2021a) A high-response formaldehyde sensor based on fibrous Ag-ZnO/In2O3 with multi-level heterojunctions. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2021.125352

Article  Google Scholar 

Liu J, Chen Y, Zhang H (2021b) Study of highly sensitive formaldehyde sensors based on ZnO/CuO heterostructure via the Sol-Gel method. Sensors 21(14):4685. https://doi.org/10.3390/s21144685

CAS  Article  Google Scholar 

Maslakov KI et al (2018) XPS study of ion irradiated and unirradiated CeO2 bulk and thin film samples. Appl Surf Sci 448:154–162. https://doi.org/10.1016/j.apsusc.2018.04.077

CAS  Article  Google Scholar 

Meng D et al (2017) CuO hollow microspheres self-assembled with nanobars: Synthesis and their sensing properties to formaldehyde. Vacuum 144:272–280. https://doi.org/10.1016/j.vacuum.2017.08.013

CAS  Article  Google Scholar 

Mirzaei A et al (2018) Resistive-based gas sensors for detection of benzene, toluene and xylene (BTX) gases: a review. J Mater Chem C 6(16):4342–4370. https://doi.org/10.1039/c8tc00245b

CAS  Article  Google Scholar 

Nasriddinov A et al (2019) Sub-ppm formaldehyde detection by n–n TiO2@SnO2 nanocomposites. Sens (switzerland). https://doi.org/10.3390/s19143182

Article  Google Scholar 

Nielsen GD, Larsen ST, Wolkoff P (2017) Re-evaluation of the WHO (2010) formaldehyde indoor air quality guideline for cancer risk assessment. Arch Toxicol 91(1):35. https://doi.org/10.1007/s00204-016-1733-8

CAS  Article  Google Scholar 

Niu J et al (2021) Study of a highly sensitive formaldehyde sensor prepared with a tungsten trioxide thin film and gold nanoparticles. IEEE Trans Electron Devices Electron Devices IEEE Trans on IEEE Trans Electron Devices 68(12):6422–6429. https://doi.org/10.1109/TED.2021.3120696

CAS  Article  Google Scholar 

Pandeeswari R, Jeyaprakash B (2014) CeO thin film as a low-temperature formaldehyde sensor in mixed vapour environment. Bull Mater Sci 37(6):1293–1299. https://doi.org/10.1007/s12034-014-0074-6

CAS  Article  Google Scholar 

Pearce N et al (2015) IARC monographs: 40 years of evaluating carcinogenic hazards to humans. https://search.ebscohost.com/login.aspx?direct=true&db=edssch&AN=edssch.oai%3aescholarship.org%2fark%3a%2f13030%2fqt8pc2q1f8&lang=zh-cn&site=eds-live Accessed 19 Dec 2021. doi:https://doi.org/10.1289/ehp.1409149

Liu P, Yu X, Wang F, Zhang W, Yang L, Liu Y (2017) Degradation of Formaldehyde and Benzene by TiO2 Photocatalytic Cement Based Materials. J Wuhan Univ Technol Mater Sci Ed (2):391. https://search.ebscohost.com/login.aspx?direct=true&db=edscqv&AN=edscqv.671944429&lang=zh-cn&site=eds-live. Accessed 15 Dec 2021.

Qu W, Wlodarski W, Austin M (2000) Microfabrication and reliability study of sapphire based Ti/Pt-electrodes for thin-film gas sensor applications. Microelectron J 31(7):561–567. https://doi.org/10.1016/S0026-2692(00)00030-6

CAS  Article  Google Scholar 

Qu Z et al (2013) Support effects on the structure and catalytic activity of mesoporous Ag/CeO2 catalysts for CO oxidation. Chem Eng J 229:522–532. https://doi.org/10.1016/j.cej.2013.06.061

CAS  Article  Google Scholar 

Ramachandran M, Subadevi R, Sivakumar M (2019) Role of pH on synthesis and characterization of cerium oxide (CeO2) nano particles by modified co-precipitation method. Vacuum 161:220–224. https://doi.org/10.1016/j.vacuum.2018.12.002

CAS  Article  Google Scholar 

Samadi S et al (2018) CeO2/TiO2 core/shell nanoparticles as quantitative gas sensor at room temperature. Sens Rev 38(4):458–466. https://doi.org/10.1108/SR-05-2017-0093

Article  Google Scholar 

Samson Daniel D, Ernest S, Fairose S (2021) Room temperature low level formaldehyde sensor using spray deposited cerium oxide thin film. Mater Today Proc 38(5):2885–2889. https://doi.org/10.1016/j.matpr.2020.09.142

CAS  Article  Google Scholar 

Sayago I et al (1995) Long-term reliability of sensors for detection of nitrogen oxides. Sens Actuators B Chem 26(1–3):56–58. https://doi.org/10.1016/0925-4005(94)01556-W

CAS  Article  Google Scholar 

Sharma RK et al (2001) Investigation of stability and reliability of tin oxide thin-film for integrated micro-machined gas sensor devices. Sens Actuators B Chem 81(1):9–16. https://doi.org/10.1016/S0925-4005(01)00920-0

CAS  Article  Google Scholar 

Song Y et al (2020) Visible light-assisted formaldehyde sensor based on HoFeO3 nanoparticles with sub-ppm detection limit. Ceram Int 46(10):16337–16344. https://doi.org/10.1016/j.ceramint.2020.03.191

CAS  Article  Google Scholar 

Potlog T, Dumitriu P, Dobromir M, Luca D (2014) XRD and XPS analysis of TiO2 thin films annealed in different environments. J Mater Sci Eng B (6):163. https://search.ebscohost.com/login.aspx?direct=true&db=edscqv&AN=edscqv.662960750&lang=zh-cn&site=eds-live. Accessed 4 Aug 2022.

Tang X et al (2017) A formaldehyde sensor based on molecularly-imprinted polymer on a TiO2 nanotube array. Sensors (14248220) 17(4):675. https://doi.org/10.3390/s17040675

CAS  Article  Google Scholar 

Tang Y et al (2021) TiO2 hierarchical nano blooming-flower decorated by Pt for formaldehyde detection. Nanotechnology. https://doi.org/10.1088/1361-6528/ac056c

Article  Google Scholar 

Toloshniak T et al (2019) First results of humidity sensors based on CeO2 thick film deposited by a new deposition technique from a suspension of nanoparticles. Microelectron Eng 207:7–14. https://doi.org/10.1016/j.mee.2018.11.013

CAS  Article  Google Scholar 

Virshup A et al (2009) Investigation of thermal stability and degradation mechanisms in Ni-based ohmic contacts to n-type SiC for high-temperature gas sensors. J Electron Mater 38(4):569. https://doi.org/10.1007/s11664-008-0609-y

CAS  Article  Google Scholar 

Wan L et al (2019) Cu2O nanocubes with mixed oxidation-state facets for (photo)catalytic hydrogenation of carbon dioxide. Nat Catal.

留言 (0)

沒有登入
gif