Fluoxetine Decreases Phagocytic Function via REV-ERBα in Microglia

Reddihough DS, Marraffa C, Mouti A, O’Sullivan M, Lee KJ, Orsini F, Hazell P, Granich J, Whitehouse AJO, Wray J, Dossetor D, Santosh P, Silove N, Kohn M (2019) Effect of fluoxetine on obsessive-compulsive behaviors in children and adolescents with autism spectrum disorders: a randomized clinical trial. JAMA 322:1561–1569

CAS  PubMed  PubMed Central  Article  Google Scholar 

Wong DT, Perry KW, Bymaster FP (2005) Case history: the discovery of fluoxetine hydrochloride (Prozac). Nat Rev Drug Discov 4:764–774

CAS  PubMed  Article  Google Scholar 

Shelton CI (2004) Long-term management of major depressive disorder: are differences among antidepressant treatments meaningful? J Clin Psychiatry 65(Suppl 17):29–33

PubMed  Google Scholar 

Caiaffo V, Oliveira BD, de Sa FB, Evencio Neto J (2016) Anti-inflammatory, antiapoptotic, and antioxidant activity of fluoxetine. Pharmacol Res Perspect 4:e00231

PubMed  PubMed Central  Article  CAS  Google Scholar 

Encinas JM, Vaahtokari A, Enikolopov G (2006) Fluoxetine targets early progenitor cells in the adult brain. Proc Natl Acad Sci USA 103:8233–8238

CAS  PubMed  PubMed Central  Article  Google Scholar 

Meyer JH, Cervenka S, Kim MJ, Kreisl WC, Henter ID, Innis RB (2020) Neuroinflammation in psychiatric disorders: PET imaging and promising new targets. Lancet Psychiatry 7:1064–1074

PubMed  PubMed Central  Article  Google Scholar 

Mondelli V, Vernon AC, Turkheimer F, Dazzan P, Pariante CM (2017) Brain microglia in psychiatric disorders. Lancet Psychiatry 4:563–572

PubMed  Article  Google Scholar 

Liu D, Wang Z, Liu S, Wang F, Zhao S, Hao A (2011) Anti-inflammatory effects of fluoxetine in lipopolysaccharide(LPS)-stimulated microglial cells. Neuropharmacology 61:592–599

CAS  PubMed  Article  Google Scholar 

Tian M, Yang M, Li Z, Wang Y, Chen W, Yang L, Li Y, Yuan H (2019) Fluoxetine suppresses inflammatory reaction in microglia under OGD/R challenge via modulation of NF-kappaB signaling. Biosci Rep 39:BSR20181584

CAS  PubMed  PubMed Central  Article  Google Scholar 

Lanquillon S, Krieg JC, Bening-Abu-Shach U, Vedder H (2000) Cytokine production and treatment response in major depressive disorder. Neuropsychopharmacology 22:370–379

CAS  PubMed  Article  Google Scholar 

Alboni S, Poggini S, Garofalo S, Milior G, El Hajj H, Lecours C, Girard I, Gagnon S, Boisjoly-Villeneuve S, Brunello N, Wolfer DP, Limatola C, Tremblay ME, Maggi L, Branchi I (2016) Fluoxetine treatment affects the inflammatory response and microglial function according to the quality of the living environment. Brain Behav Immun 58:261–271

CAS  PubMed  Article  Google Scholar 

Ha E, Jung KH, Choe BK, Bae JH, Shin DH, Yim SV, Baik HH (2006) Fluoxetine increases the nitric oxide production via nuclear factor kappa B-mediated pathway in BV2 murine microglial cells. Neurosci Lett 397:185–189

CAS  PubMed  Article  Google Scholar 

Kraemer HC, Frank E, Kupfer DJ (2006) Moderators of treatment outcomes: clinical, research, and policy importance. JAMA 296:1286–1289

CAS  PubMed  Article  Google Scholar 

Rahimian R, Wakid M, O’Leary LA, Mechawar N (2021) The emerging tale of microglia in psychiatric disorders. Neurosci Biobehav Rev 131:1–29

PubMed  Article  Google Scholar 

Galloway DA, Phillips AEM, Owen DRJ, Moore CS (2019) Phagocytosis in the brain: homeostasis and disease. Front Immunol 10:790

CAS  PubMed  PubMed Central  Article  Google Scholar 

Knuesel I, Chicha L, Britschgi M, Schobel SA, Bodmer M, Hellings JA, Toovey S, Prinssen EP (2014) Maternal immune activation and abnormal brain development across CNS disorders. Nat Rev Neurol 10:643–660

CAS  PubMed  Article  Google Scholar 

Wohleb ES, Terwilliger R, Duman CH, Duman RS (2018) Stress-induced neuronal colony stimulating factor 1 provokes microglia-mediated neuronal remodeling and depressive-like behavior. Biol Psychiatry 83:38–49

CAS  PubMed  Article  Google Scholar 

Lehmann ML, Cooper HA, Maric D, Herkenham M (2016) Social defeat induces depressive-like states and microglial activation without involvement of peripheral macrophages. J Neuroinflamm 13:224

Article  CAS  Google Scholar 

Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, Ransohoff RM, Greenberg ME, Barres BA, Stevens B (2012) Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74:691–705

CAS  PubMed  PubMed Central  Article  Google Scholar 

Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, Micheva KD, Mehalow AK, Huberman AD, Stafford B, Sher A, Litke AM, Lambris JD, Smith SJ, John SW, Barres BA (2007) The classical complement cascade mediates CNS synapse elimination. Cell 131:1164–1178

CAS  PubMed  Article  Google Scholar 

Fonseca MI, Chu SH, Hernandez MX, Fang MJ, Modarresi L, Selvan P, MacGregor GR, Tenner AJ (2017) Cell-specific deletion of C1qa identifies microglia as the dominant source of C1q in mouse brain. J Neuroinflamm 14:48

Article  CAS  Google Scholar 

Takayama F, Hayashi Y, Wu Z, Liu Y, Nakanishi H (2016) Diurnal dynamic behavior of microglia in response to infected bacteria through the UDP-P2Y6 receptor system. Sci Rep 6:30006

CAS  PubMed  PubMed Central  Article  Google Scholar 

Fonken LK, Frank MG, Kitt MM, Barrientos RM, Watkins LR, Maier SF (2015) Microglia inflammatory responses are controlled by an intrinsic circadian clock. Brain Behav Immun 45:171–179

CAS  PubMed  Article  Google Scholar 

Mavroudis PD, DuBois DC, Almon RR, Jusko WJ (2018) Modeling circadian variability of core-clock and clock-controlled genes in four tissues of the rat. PLoS ONE 13:e0197534

PubMed  PubMed Central  Article  CAS  Google Scholar 

Wolff SEC, Wang XL, Jiao H, Sun J, Kalsbeek A, Yi CX, Gao Y (2020) The effect of Rev-erbalpha agonist SR9011 on the immune response and cell metabolism of microglia. Front Immunol 11:550145

CAS  PubMed  PubMed Central  Article  Google Scholar 

Wang XL, Wolff SEC, Korpel N, Milanova I, Sandu C, Rensen PCN, Kooijman S, Cassel JC, Kalsbeek A, Boutillier AL, Yi CX (2020) Deficiency of the circadian clock gene Bmal1 reduces microglial immunometabolism. Front Immunol 11:586399

CAS  PubMed  PubMed Central  Article  Google Scholar 

Salgado-Delgado R, Tapia Osorio A, Saderi N, Escobar C (2011) Disruption of circadian rhythms: a crucial factor in the etiology of depression. Depress Res Treat 2011:839743

PubMed  PubMed Central  Google Scholar 

Wirz-Justice A, Cajochen C, Nussbaum P (1997) A schizophrenic patient with an arrhythmic circadian rest-activity cycle. Psychiatry Res 73:83–90

CAS  PubMed  Article  Google Scholar 

Chouinard S, Poulin J, Stip E, Godbout R (2004) Sleep in untreated patients with schizophrenia: a meta-analysis. Schizophr Bull 30:957–967

PubMed  Article  Google Scholar 

Afonso P, Brissos S, Figueira ML, Paiva T (2011) Schizophrenia patients with predominantly positive symptoms have more disturbed sleep-wake cycles measured by actigraphy. Psychiatry Res 189:62–66

PubMed  Article  Google Scholar 

Gold AK, Kinrys G (2019) Treating circadian rhythm disruption in bipolar disorder. Curr Psychiatry Rep 21:14

PubMed  PubMed Central  Article  Google Scholar 

Bersani G, Bersani FS, Prinzivalli E, Limpido L, Marconi D, Valeriani G, Colletti C, Anastasia A, Pacitti F (2012) Premorbid circadian profile of patients with major depression and panic disorder. Riv Psichiatr 47:407–412

PubMed  Google Scholar 

Schubert JR, Coles ME (2013) Obsessive-compulsive symptoms and characteristics in individuals with delayed sleep phase disorder. J Nerv Ment Dis 201:877–884

PubMed  Article  Google Scholar 

You MJ, Bang M, Park HS, Yang B, Jang KB, Yoo J, Hwang DY, Kim M, Kim B, Lee SH, Kwon MS (2020) Human umbilical cord-derived mesenchymal stem cells alleviate schizophrenia-relevant behaviors in amphetamine-sensitized mice by inhibiting neuroinflammation. Transl Psychiatry 10:123

CAS  PubMed  PubMed Central  Article  Google Scholar 

You MJ, Rim C, Kang YJ, Kwon MS (2021) A new method for obtaining bankable and expandable adult-like microglia in mice. J Neuroinflamm 18:294

CAS  Article  Google Scholar 

Coogan AN, Piggins HD (2003) Circadian and photic regulation of phosphorylation of ERK1/2 and Elk-1 in the suprachiasmatic nuclei of the Syrian hamster. J Neurosci 23:3085–3093

CAS  PubMed  PubMed Central  Article  Google Scholar 

Ginty DD, Kornhauser JM, Thompson MA, Bading H, Mayo KE, Takahashi JS, Greenberg ME (1993) Regulation of CREB phosphorylation in the suprachiasmatic nucleus by light and a circadian clock. Science 260:238–241

CAS  PubMed  Article  Google Scholar 

Lee B, Li A, Hansen KF, Cao R, Yoon JH, Obrietan K (2010) CREB influences timing and entrainment of the SCN circadian clock. J Biol Rhythms 25:410–420

CAS 

留言 (0)

沒有登入
gif