Sodium Para-aminosalicylic Acid Inhibits Lead-Induced Neuroinflammation in Brain Cortex of Rats by Modulating SIRT1/HMGB1/NF-κB Pathway

Mitra A, Chatterjee S, Kataki S, Rastogi RP, Gupta DK (2021) Bacterial tolerance strategies against lead toxicity and their relevance in bioremediation application. Environ Sci Pollut Res Int 28(12):14271–14284. https://doi.org/10.1007/s11356-021-12583-9

CAS  Article  PubMed  Google Scholar 

Mitra P, Sharma S, Purohit P, Sharma P (2017) Clinical and molecular aspects of lead toxicity: an update. Crit Rev Clin Lab Sci 54(7–8):506–528. https://doi.org/10.1080/10408363.2017.1408562

CAS  Article  PubMed  Google Scholar 

Hon KL, Fung CK, Leung AK (2017) Childhood lead poisoning: an overview. Hong Kong Med J 23(6):616–621. https://doi.org/10.12809/hkmj176214

CAS  Article  PubMed  Google Scholar 

Schwartz BS, Stewart WF, Bolla KI, Simon PD, Bandeen-Roche K, Gordon PB, Links JM, Todd AC (2000) Past adult lead exposure is associated with longitudinal decline in cognitive function. Neurology 55(8):1144–1150. https://doi.org/10.1212/wnl.55.8.1144

CAS  Article  PubMed  Google Scholar 

Lanphear BP, Hornung R, Khoury J, Yolton K, Baghurst P, Bellinger DC, Canfield RL, Dietrich KN, Bornschein R, Greene T, Rothenberg SJ, Needleman HL, Schnaas L, Wasserman G, Graziano J, Roberts R (2005) Low-level environmental lead exposure and children’s intellectual function: an international pooled analysis. Environ Health Perspect 113(7):894–899. https://doi.org/10.1289/ehp.7688

CAS  Article  PubMed  PubMed Central  Google Scholar 

Rocha A, Trujillo KA (2019) Neurotoxicity of low-level lead exposure: history, mechanisms of action, and behavioral effects in humans and preclinical models. Neurotoxicology 73:58–80. https://doi.org/10.1016/j.neuro.2019.02.021

CAS  Article  PubMed  PubMed Central  Google Scholar 

Cecil KM, Brubaker CJ, Adler CM, Dietrich KN, Altaye M, Egelhoff JC, Wessel S, Elangovan I, Hornung R, Jarvis K, Lanphear BP (2008) Decreased brain volume in adults with childhood lead exposure. PLoS Med 5(5):112. https://doi.org/10.1371/journal.pmed.0050112

CAS  Article  Google Scholar 

Reuben A, Elliott ML, Abraham WC, Broadbent J, Houts RM, Ireland D, Knodt AR, Poulton R, Ramrakha S, Hariri AR, Caspi A, Moffitt TE (2020) Association of childhood lead exposure with MRI measurements of structural brain integrity in midlife. JAMA 324(19):1970–1979. https://doi.org/10.1001/jama.2020.19998

CAS  Article  PubMed  Google Scholar 

Marshall AT, Betts S, Kan EC, McConnell R, Lanphear BP, Sowell ER (2020) Association of lead-exposure risk and family income with childhood brain outcomes. Nat Med 26(1):91–97. https://doi.org/10.1038/s41591-019-0713-y

CAS  Article  PubMed  PubMed Central  Google Scholar 

Leão LKR, Bittencourt LO, Oliveira ACA, Nascimento PC, Ferreira MKM, Miranda GHN, Ferreira RO, Eiró-Quirino L, Puty B, Dionizio A, Cartágenes SC, Freire MAM, Buzalaf MAR, Crespo-Lopez ME, Maia CSF, Lima RR (2021) Lead-induced motor dysfunction is associated with oxidative stress, proteome modulation, and neurodegeneration in motor cortex of rats. Oxid Med Cell Longev. https://doi.org/10.1155/2021/5595047

Article  PubMed  PubMed Central  Google Scholar 

Ji X, Wang B, Paudel YN, Li Z, Zhang S, Mou L, Liu K, Jin M (2021) Protective effect of chlorogenic acid and its analogues on lead-induced developmental neurotoxicity through modulating oxidative stress and autophagy. Front Mol Biosci 8:655549. https://doi.org/10.3389/fmolb.2021.655549

CAS  Article  PubMed  PubMed Central  Google Scholar 

Liu F, Wang Z, Wei Y, Liu R, Jiang C, Gong C, Liu Y, Yan B (2021) The leading role of adsorbed lead in Pm(2.5)-induced hippocampal neuronal apoptosis and synaptic damage. J Hazard Mater 416:125867. https://doi.org/10.1016/j.jhazmat.2021.125867

CAS  Article  PubMed  Google Scholar 

Hernández-Coro A, Sánchez-Hernández BE, Montes S, Martínez-Lazcano JC, González-Guevara E, Pérez-Severiano F (2021) Alterations in gene expression due to chronic lead exposure induce behavioral changes. Neurosci Biobehav Rev 126:361–367. https://doi.org/10.1016/j.neubiorev.2021.03.031

CAS  Article  PubMed  Google Scholar 

Lu LL, Zhang YW, Li ZC, Fang YY, Wang LL, Zhao YS, Li SJ, Ou SY, Aschner M, Jiang YM (2021) Therapeutic effects of sodium para-aminosalicylic acid on cognitive deficits and activated Erk1/2-P90(Rsk)/Nf-Κb inflammatory pathway in Pb-exposed rats. Biol Trace Elem Res. https://doi.org/10.1007/s12011-021-02874-0

Article  PubMed  Google Scholar 

Hou Y, Wei Y, Lautrup S, Yang B, Wang Y, Cordonnier S, Mattson MP, Croteau DL, Bohr VA (2021) Nad(+) supplementation reduces neuroinflammation and cell senescence in a transgenic mouse model of Alzheimer’s disease via CGAS-sting. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.2011226118

Article  PubMed  PubMed Central  Google Scholar 

Ghosh S, Wu MD, Shaftel SS, Kyrkanides S, LaFerla FM, Olschowka JA, O’Banion MK (2013) Sustained interleukin-1β overexpression exacerbates tau pathology despite reduced amyloid burden in an Alzheimer’s mouse model. J Neurosci 33(11):5053–5064. https://doi.org/10.1523/jneurosci.4361-12.2013

CAS  Article  PubMed  PubMed Central  Google Scholar 

Machoń-Grecka A, Dobrakowski M, Boroń M, Lisowska G, Kasperczyk A, Kasperczyk S (2017) The influence of occupational chronic lead exposure on the levels of selected pro-inflammatory cytokines and angiogenic factors. Hum Exp Toxicol 36(5):467–473. https://doi.org/10.1177/0960327117703688

CAS  Article  PubMed  Google Scholar 

Di Lorenzo L, Vacca A, Corfiati M, Lovreglio P, Soleo L (2007) Evaluation of tumor necrosis factor-alpha and granulocyte colony-stimulating factor serum levels in lead-exposed smoker workers. Int J Immunopathol Pharmacol 20(2):239–247. https://doi.org/10.1177/039463200702000204

Article  PubMed  Google Scholar 

Li N, Liu F, Song L, Zhang P, Qiao M, Zhao Q, Li W (2014) The effects of early life Pb exposure on the expression of Il1-Β, Tnf-Α and Aβ in cerebral cortex of mouse pups. J Trace Elem Med Biol 28(1):100–104. https://doi.org/10.1016/j.jtemb.2013.07.003

CAS  Article  PubMed  Google Scholar 

Chen C, Zhou M, Ge Y, Wang X (2020) Sirt1 and aging related signaling pathways. Mech Ageing Dev 187:111215. https://doi.org/10.1016/j.mad.2020.111215

CAS  Article  PubMed  Google Scholar 

Jiao F, Gong Z (2020) The beneficial roles of Sirt1 in neuroinflammation-related diseases. Oxid Med Cell Longev 2020:6782872. https://doi.org/10.1155/2020/6782872

CAS  Article  PubMed  PubMed Central  Google Scholar 

Chen X, Chen C, Fan S, Wu S, Yang F, Fang Z, Fu H, Li Y (2018) Omega-3 polyunsaturated fatty acid attenuates the inflammatory response by modulating microglia polarization through Sirt1-mediated deacetylation of the Hmgb1/Nf-Κb pathway following experimental traumatic brain injury. J Neuroinflamm 15(1):116. https://doi.org/10.1186/s12974-018-1151-3

CAS  Article  Google Scholar 

Chen F, Zhou CC, Yang Y, Liu JW, Yan CH (2019) Gm1 ameliorates lead-induced cognitive deficits and brain damage through activating the Sirt1/Creb/Bdnf pathway in the developing male rat hippocampus. Biol Trace Elem Res 190(2):425–436. https://doi.org/10.1007/s12011-018-1569-6

CAS  Article  PubMed  Google Scholar 

Hossain S, Bhowmick S, Jahan S, Rozario L, Sarkar M, Islam S, Basunia MA, Rahman A, Choudhury BK, Shahjalal H (2016) Maternal lead exposure decreases the levels of brain development and cognition-related proteins with concomitant upsurges of oxidative stress, inflammatory response and apoptosis in the offspring rats. Neurotoxicology 56:150–158. https://doi.org/10.1016/j.neuro.2016.07.013

CAS  Article  PubMed  Google Scholar 

Peng DJ, Li J, Deng Y, Zhu X, Zhao L, Zhang Y, Li Z, Ou S, Li S, Jiang Y (2020) Sodium para-aminosalicylic acid inhibits manganese-induced Nlrp3 inflammasome-dependent pyroptosis by inhibiting Nf-Κb pathway activation and oxidative stress. J Neuroinflammation 17(1):343. https://doi.org/10.1186/s12974-020-02018-6

CAS  Article  PubMed  PubMed Central  Google Scholar 

Li SJ, Qin WX, Peng DJ, Yuan ZX, He SN, Luo YN, Aschner M, Jiang YM, Liang DY, Xie BY, Xu F (2018) Sodium P-aminosalicylic acid inhibits sub-chronic manganese-induced neuroinflammation in rats by modulating Mapk and Cox-2. Neurotoxicology 64:219–229. https://doi.org/10.1016/j.neuro.2017.06.012

CAS  Article  PubMed  Google Scholar 

Ky SQ, Deng HS, Xie PY, Hu W (1992) A report of two cases of chronic serious manganese poisoning treated with sodium para-aminosalicylic acid. Br J Ind Med 49(1):66–69. https://doi.org/10.1136/oem.49.1.66

CAS  Article  PubMed  PubMed Central  Google Scholar 

Jiang YM, Mo XA, Du FQ, Fu X, Zhu XY, Gao HY, Xie JL, Liao FL, Pira E, Zheng W (2006) Effective treatment of manganese-induced occupational parkinsonism with P-aminosalicylic acid: a case of 17-year follow-up study. J Occup Environ Med 48(6):644–649. https://doi.org/10.1097/01.jom.0000204114.01893.3e

Article  PubMed  PubMed Central  Google Scholar 

Deng Y, Peng D, Yang C, Zhao L, Li J, Lu L, Zhu X, Li S, Aschner M, Jiang Y (2021) Preventive treatment with sodium para-aminosalicylic acid inhibits manganese-induced apoptosis and inflammation via the Mapk pathway in rat thalamus. Drug Chem Toxicol. https://doi.org/10.1080/01480545.2021.2008127

Article  PubMed  Google Scholar 

Li J, Deng Y, Peng D, Zhao L, Fang Y, Zhu X, Li S, Aschner M, Ou S, Jiang Y (2021) Sodium P-aminosalicylic acid attenuates manganese-induced neuroinflammation in Bv2 microglia by modulating Nf-Κb pathway. Biol Trace Elem Res 199(12):4688–4699. https://doi.org/10.1007/s12011-021-02581-w

CAS  Article  PubMed  Google Scholar 

Deng YF, Ou SY, Jiang YM, Chen HB, Dang X, Lu S, Wang K, Jiang YH, Li G, Lu JP (2009) Efects of sodium para-aminosalicylic acid on hippocampal ultramicro-structure of subchronic lead-exposed rats. J Toxicol 23(03):213–216. https://doi.org/10.16421/j.cnki.1002-3127.2009.03.011 (in Chinese)

CAS  Article  Google Scholar 

Li Z-c, Wang L-l, Zhao Y-s, Peng D-j, Chen J, Jiang S-y, Zhao L, Aschner M, Li S-j, Jiang Y-m (2022) Sodium para-aminosalicylic acid ameliorates lead-induced hippocampal neuronal apoptosis by suppressing the activation of the Ip3r-Ca2+-Ask1-P38 signaling pathway. Ecotoxicol Environ Saf 241:113829. https://doi.org/10.1016/j.ecoenv.2022.113829

CAS  Article  Google Scholar 

He SN, Qin WX, Lu YH, Li K, Luo YN, Yuan ZX, Jiang XL, Mo YH, Li WJ, Jiang YM (2017) Effects of sodium para-aminosalicylic acid on apoptosis of Pc12 cells induced by lead-exposure. Chin J Pharmacol Toxicol 31(02):159–164. https://doi.org/10.3867/j.issn.1000-3002.2017.02.06 (in Chinese)

留言 (0)

沒有登入
gif