Role of MicroRNAs, Aptamers in Neuroinflammation and Neurodegenerative Disorders

Ahmadi M, Rahbarghazi R, Shahbazfar AA, Keyhanmanesh R (2018) Monitoring IL-13 expression in relation to miRNA-155 and miRNA-133 changes following intra-tracheal administration of mesenchymal stem cells and conditioned media in ovalbumin-sensitized rats. Thai J Vet Med 48:347–355

Google Scholar 

Alexandrov PN, Dua P, Lukiw WJ (2014) Up-regulation of miRNA-146a in progressive, age-related inflammatory neurodegenerative disorders of the human CNS. Front Neurol. https://doi.org/10.3389/fneur.2014.00181

Article  PubMed  PubMed Central  Google Scholar 

Ambros V (1989) A hierarchy of regulatory genes controls a larva-to-adult developmental switch in C. elegans. Cell 57:49–57. https://doi.org/10.1016/0092-8674(89)90171-2

CAS  Article  PubMed  Google Scholar 

Ambros V, Horvitz HR (1984) Heterochronic mutants of the nematode Caenorhabditis elegans. Science 226:409–416. https://doi.org/10.1126/science.6494891

CAS  Article  PubMed  Google Scholar 

Ambros V, Bartel B, Bartel DP et al (2003) A uniform system for microRNA annotation. RNA 9:277–279. https://doi.org/10.1261/rna.2183803

CAS  Article  PubMed  PubMed Central  Google Scholar 

An F, Gong G, Wang Y et al (2017) MiR-124 acts as a target for Alzheimer’s disease by regulating BACE. Oncotarget 8:114065–114071

PubMed  PubMed Central  Google Scholar 

Annoni C, Nakata E, Tamura T et al (2012) Construction of ratiometric fluorescent sensors by ribonucleopeptides. Org Biomol Chem 10:8767–8769. https://doi.org/10.1039/c2ob26722e

CAS  Article  PubMed  Google Scholar 

Atri C, Guerfali FZ, Laouini D (2019) MicroRNAs in diagnosis and therapeutics. In: AGO-driven non-coding RNAs. Elsevier, pp 137–177

Barnett RE, Conklin DJ, Ryan L et al (2016) Anti-inflammatory effects of miR-21 in the macrophage response to peritonitis. J Leukoc Biol 99:361–371. https://doi.org/10.1189/jlb.4a1014-489r

CAS  Article  PubMed  Google Scholar 

Barta T, Peskova L, Hampl A (2016) MiRNAsong: a web-based tool for generation and testing of miRNA sponge constructs in silico. Sci Rep 6:1–8. https://doi.org/10.1038/srep36625

CAS  Article  Google Scholar 

Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

CAS  PubMed  Google Scholar 

Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

CAS  PubMed  PubMed Central  Google Scholar 

Basak I, Patil KS, Alves G et al (2016) MicroRNAs as neuroregulators, biomarkers and therapeutic agents in neurodegenerative diseases. Cell Mol Life Sci 73:811–827

CAS  PubMed  Google Scholar 

Bernardo BC, Ooi JYY, Lin RCY, Mcmullen JR (2015) miRNA therapeutics: a new class of drugs with potential therapeutic applications in the heart Host transcriptomics and Metatranscriptomics: interactions between pateint, microbes and bacteriophage view project treatment of severe Staphylococcus aureus inf. Futur Sci 7:1771–1792. https://doi.org/10.4155/fmc.15.107

CAS  Article  Google Scholar 

Beyer K, Domingo-Sàbat M, Ariza A (2009) Molecular pathology of lewy body diseases. Int J Mol Sci 10:724–745

CAS  PubMed  PubMed Central  Google Scholar 

Bhattacharjee S, Zhao Y, Lukiw WJ (2014) Deficits in the miRNA-34a-regulated endogenous TREM2 phagocytosis sensor-receptor in Alzheimer’s disease (AD); an update. Front Aging Neurosci. https://doi.org/10.3389/fnagi.2014.00116

Article  PubMed  PubMed Central  Google Scholar 

Blennow K, Zetterberg H (2018) Biomarkers for Alzheimer’s disease: current status and prospects for the future. J Intern Med 284:643–663

CAS  PubMed  Google Scholar 

Blondal T, Jensby Nielsen S, Baker A et al (2013) Assessing sample and miRNA profile quality in serum and plasma or other biofluids. Methods 59:S1–S6

CAS  PubMed  Google Scholar 

Bohnsack MT, Czaplinski K, Görlich D (2004) Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 10:185–191. https://doi.org/10.1261/rna.5167604

CAS  Article  PubMed  PubMed Central  Google Scholar 

Bonetta L (2009) RNA-based therapeutics: ready for delivery? Cell 136:581–584. https://doi.org/10.1016/j.cell.2009.02.010

CAS  Article  PubMed  Google Scholar 

Bose R, Ain R (2018) Regulation of transcription by circular RNAs. Advances in experimental medicine and biology. Springer, New York, pp 81–94

Google Scholar 

Bouvier-Müller A, Ducongé F (2018a) Application of aptamers for in vivo molecular imaging and theranostics. Adv Drug Deliv Rev 134:94–106. https://doi.org/10.1016/j.addr.2018.08.004

CAS  Article  PubMed  Google Scholar 

Bouvier-Müller A, Ducongé F (2018b) Nucleic acid aptamers for neurodegenerative diseases. Biochimie 145:73–83. https://doi.org/10.1016/j.biochi.2017.10.026

CAS  Article  PubMed  Google Scholar 

Briggs CE, Wang Y, Kong B et al (2015) Midbrain dopamine neurons in Parkinson’s disease exhibit a dysregulated miRNA and target-gene network. Brain Res 1618:111–121. https://doi.org/10.1016/j.brainres.2015.05.021

CAS  Article  PubMed  PubMed Central  Google Scholar 

Briskin D, Wang PY, Bartel DP (2020) The biochemical basis for the cooperative action of microRNAs. Proc Natl Acad Sci U S A 117:17764–17774. https://doi.org/10.1073/pnas.1920404117

CAS  Article  PubMed  PubMed Central  Google Scholar 

Bushati N, Cohen SM (2007) microRNA functions. Annu Rev Cell Dev Biol 23:175–205. https://doi.org/10.1146/annurev.cellbio.23.090506.123406

CAS  Article  PubMed  Google Scholar 

Campani V, De Rosa G, Misso G et al (2016) Lipid nanoparticles to deliver miRNA in cancer article in current pharmaceutical biotechnology. Curr Pharm Biotechnol 17:728–736. https://doi.org/10.2174/138920101708160517234941

CAS  Article  Google Scholar 

Cardo LF, Coto E, Ribacoba R et al (2014) MiRNA profile in the substantia Nigra of Parkinson’s disease and healthy subjects. J Mol Neurosci 54:830–836. https://doi.org/10.1007/s12031-014-0428-y

CAS  Article  PubMed  Google Scholar 

Cardoso AL, Guedes JR, De Lima MCP (2016) Role of microRNAs in the regulation of innate immune cells under neuroinflammatory conditions. Curr Opin Pharmacol 26:1–9. https://doi.org/10.1016/j.coph.2015.09.001

CAS  Article  PubMed  Google Scholar 

Caron NS, Southwell AL, Brouwers CC et al (2020) Potent and sustained huntingtin lowering via AAV5 encoding miRNA preserves striatal volume and cognitive function in a humanized mouse model of Huntington disease. Nucleic Acids Res 48:36–54. https://doi.org/10.1093/nar/gkz976

CAS  Article  PubMed  Google Scholar 

Catalanotto C, Cogoni C, Zardo G (2016) MicroRNA in control of gene expression: an overview of nuclear functions. Int J Mol Sci. https://doi.org/10.3390/ijms17101712

Article  PubMed  PubMed Central  Google Scholar 

Chandola C, Neerathilingam M (2020) Aptamers for targeted delivery: current challenges and future opportunities. In: Role of novel drug delivery vehicles in nanobiomedicine. IntechOpen

Chatterjee P, Roy D (2017) Comparative analysis of RNA-Seq data from brain and blood samples of Parkinson’s disease. Biochem Biophys Res Commun 484:557–564. https://doi.org/10.1016/j.bbrc.2017.01.121

CAS  Article  PubMed  Google Scholar 

Chen CYA, Chang JT, Ho YF, Bin SA (2016a) MiR-26 down-regulates TNF-α/NF-κB signalling and IL-6 expression by silencing HMGA1 and MALT1. Nucleic Acids Res 44:3772–3787. https://doi.org/10.1093/nar/gkw205

CAS  Article  PubMed  PubMed Central  Google Scholar 

Chen Z, Zhang Z, Zhang D et al (2016b) Hydrogen sulfide protects against TNF-α induced neuronal cell apoptosis through miR-485-5p/TRADD signaling. Biochem Biophys Res Commun 478:1304–1309. https://doi.org/10.1016/j.bbrc.2016.08.116

CAS  Article  PubMed  Google Scholar 

Chen Q, Lv J, Yang W et al (2019) Targeted inhibition of STAT3 as a potential treatment strategy for atherosclerosis. Theranostics 9:6424–6442

CAS  PubMed  PubMed Central  Google Scholar 

Cheng PH, Li CL, Chang YF et al (2013) MiR-196a ameliorates phenotypes of huntington disease in cell, transgenic mouse, and induced pluripotent stem cell models. Am J Hum Genet 93:306–312. https://doi.org/10.1016/j.ajhg.2013.05.025

CAS  Article  PubMed  PubMed Central  Google Scholar 

Chu H, Kohane DS, Langer R (2016) RNA therapeutics: the potential treatment for myocardial infarction. Regen Ther 4:83–91. https://doi.org/10.1016/j.reth.2016.03.002

Article  PubMed  PubMed Central  Google Scholar 

Cogswell JP, Ward J, Taylor IA et al (2008) Identification of miRNA changes in Alzheimer’s disease brain and CSF yields putative biomarkers and insights into disease pathways. J Alzheimer’s Dis 14:27–41. https://doi.org/10.3233/JAD-2008-14103

CAS  Article  Google Scholar 

Cressatti M, Juwara L, Galindez JM et al (2020) Salivary microR-153 and microR-223 levels as potential diagnostic biomarkers of idiopathic Parkinson’s disease. Mov Disord 35:468–477. https://doi.org/10.1002/mds.27935

CAS  Article  PubMed  Google Scholar 

Dave VP, Ngo TA, Pernestig AK et al (2019) MicroRNA amplification and detection technologies: opportunities and challenges for point of care diagnostics. Lab Investig 99:452–469

CAS  PubMed 

留言 (0)

沒有登入
gif