Methamphetamine Exposure During Development Causes Lasting Changes to Mesolimbic Dopamine Signaling in Mice

Abar B et al (2013) Examining the relationships between prenatal methamphetamine exposure, early adversity, and child neurobehavioral disinhibition. Psychol Addict Behav 27:662–673. https://doi.org/10.1037/a0030157

Article  PubMed  Google Scholar 

Ares-Santos S, Granado N, Espadas I, Martinez-Murillo R, Moratalla R (2014) Methamphetamine causes degeneration of dopamine cell bodies and terminals of the nigrostriatal pathway evidenced by silver staining. Neuropsychopharmacology 39:1066–1080. https://doi.org/10.1038/npp.2013.307

CAS  Article  PubMed  Google Scholar 

Calipari ES, Ferris MJ, Siciliano CA, Jones SR (2015) Differential influence of dopamine transport rate on the potencies of cocaine, amphetamine, and methylphenidate. ACS Chem Neurosci 6:155–162. https://doi.org/10.1021/cn500262x

CAS  Article  PubMed  Google Scholar 

Diaz SD et al (2014) Effects of prenatal methamphetamine exposure on behavioral and cognitive findings at 7.5 years of age. J Pediatr 164:1333–1338. https://doi.org/10.1016/j.jpeds.2014.01.053

CAS  Article  PubMed  PubMed Central  Google Scholar 

Dobbing J, Sands J (1979) Comparative aspects of the brain growth spurt. Early Hum Dev 3:79–83

CAS  Article  Google Scholar 

Glantz MD, Chambers JC (2006) Prenatal drug exposure effects on subsequent vulnerability to drug abuse. Dev Psychopathol 18:893–922

Article  Google Scholar 

Graham DL et al (2013) Neonatal +-methamphetamine exposure in rats alters adult locomotor responses to dopamine D1 and D2 agonists and to a glutamate NMDA receptor antagonist, but not to serotonin agonists. Int J Neuropsychopharmacol 16:377–391. https://doi.org/10.1017/S1461145712000144

CAS  Article  PubMed  Google Scholar 

Hedegaard H, Bastian BA, Trinidad JP, Spencer M, Warner M (2018) Drugs most frequently involved in drug overdose deaths: United States, 2011–2016. Natl Vital Stat Rep 67:1–14

PubMed  Google Scholar 

Hedges DM et al (2018) Methamphetamine induces dopamine release in the nucleus accumbens through a sigma receptor-mediated pathway. Neuropsychopharmacology 43:1405–1414. https://doi.org/10.1038/npp.2017.291

CAS  Article  PubMed  PubMed Central  Google Scholar 

Jablonski SA, Williams MT, Vorhees CV (2017) Learning and memory effects of neonatal methamphetamine exposure in rats: Role of reactive oxygen species and age at assessment. Synapse. https://doi.org/10.1002/syn.21992

Article  PubMed  Google Scholar 

Jones CM, Olsen EO, O’Donnell J, Mustaquim D (2020) Resurgent Methamphetamine Use at Treatment Admission in the United States, 2008–2017. Am J Public Health 110:509–516. https://doi.org/10.2105/AJPH.2019.305527

Article  PubMed  PubMed Central  Google Scholar 

Kaewsuk S, Sae-ung K, Phansuwan-Pujito P, Govitrapong P (2009) Melatonin attenuates methamphetamine-induced reduction of tyrosine hydroxylase, synaptophysin and growth-associated protein-43 levels in the neonatal rat brain. Neurochem Int 55:397–405. https://doi.org/10.1016/j.neuint.2009.04.010

CAS  Article  PubMed  Google Scholar 

Kaplan SV et al (2016) Impaired brain dopamine and serotonin release and uptake in Wistar rats following treatment with carboplatin. ACS Chem Neurosci 7:689–699. https://doi.org/10.1021/acschemneuro.5b00029

CAS  Article  PubMed  Google Scholar 

Kiblawi ZN et al (2014) Prenatal methamphetamine exposure and neonatal and infant neurobehavioral outcome: results from the IDEAL study. Subst Abus 35:68–73. https://doi.org/10.1080/08897077.2013.814614

Article  PubMed  PubMed Central  Google Scholar 

Krasnova IN, Cadet JL (2009) Methamphetamine toxicity and messengers of death. Brain Res Rev 60:379–407. https://doi.org/10.1016/j.brainresrev.2009.03.002

CAS  Article  PubMed  PubMed Central  Google Scholar 

Kwiatkowski MA, Roos A, Stein DJ, Thomas KG, Donald K (2014) Effects of prenatal methamphetamine exposure: a review of cognitive and neuroimaging studies. Metab Brain Dis 29:245–254. https://doi.org/10.1007/s11011-013-9470-7

CAS  Article  PubMed  Google Scholar 

Kwiatkowski MA, Donald KA, Stein DJ, Ipser J, Thomas KGF, Roos A (2018) Cognitive outcomes in prenatal methamphetamine exposed children aged six to seven years. Compr Psychiatry 80:24–33. https://doi.org/10.1016/j.comppsych.2017.08.003

Article  PubMed  Google Scholar 

Lee FJ, Pei L, Moszczynska A, Vukusic B, Fletcher PJ, Liu F (2007) Dopamine transporter cell surface localization facilitated by a direct interaction with the dopamine D2 receptor. EMBO J 26:2127–2136. https://doi.org/10.1038/sj.emboj.7601656

CAS  Article  PubMed  PubMed Central  Google Scholar 

Macuchova E, Slamberova R (2017a) Does prenatal methamphetamine exposure induce sensitization to drugs in adulthood? Physiol Res 66:S457–S467

CAS  Article  Google Scholar 

McFadden L, Yamamoto BK, Matuszewich L (2011) Alterations in adult behavioral responses to cocaine and dopamine transporters following juvenile exposure to methamphetamine. Behav Brain Res 216:726–730. https://doi.org/10.1016/j.bbr.2010.08.041

CAS  Article  PubMed  Google Scholar 

Mereu M et al (2017) Dopamine transporter (DAT) genetic hypofunction in mice produces alterations consistent with ADHD but not schizophrenia or bipolar disorder. Neuropharmacology 121:179–194. https://doi.org/10.1016/j.neuropharm.2017.04.037

CAS  Article  PubMed  Google Scholar 

Patten AR, Fontaine CJ, Christie BR (2014) A comparison of the different animal models of fetal alcohol spectrum disorders and their use in studying complex behaviors. Front Pediatr 2:93. https://doi.org/10.3389/fped.2014.00093

Article  PubMed  PubMed Central  Google Scholar 

Salahpour A et al (2008) Increased amphetamine-induced hyperactivity and reward in mice overexpressing the dopamine transporter. Proc Natl Acad Sci U S A 105:4405–4410. https://doi.org/10.1073/pnas.0707646105

Article  PubMed  PubMed Central  Google Scholar 

Schaefer TL, Ehrman LA, Gudelsky GA, Vorhees CV, Williams MT (2006) Comparison of monoamine and corticosterone levels 24 h following (+)methamphetamine, (+/-)3,4-methylenedioxymethamphetamine, cocaine, (+)fenfluramine or (+/-)methylphenidate administration in the neonatal rat. J Neurochem 98:1369–1378. https://doi.org/10.1111/j.1471-4159.2006.04034.x

CAS  Article  PubMed  PubMed Central  Google Scholar 

Seiden LS, Sabol KE, Ricaurte GA (1993) Amphetamine: effects on catecholamine systems and behavior. Annu Rev Pharmacol Toxicol 33:639–677. https://doi.org/10.1146/annurev.pa.33.040193.003231

CAS  Article  PubMed  Google Scholar 

Siegel JA, Park BS, Raber J (2011) Long-term effects of neonatal methamphetamine exposure on cognitive function in adolescent mice. Behav Brain Res 219:159–164. https://doi.org/10.1016/j.bbr.2011.01.015

CAS  Article  PubMed  PubMed Central  Google Scholar 

Spielewoy C, Roubert C, Hamon M, Nosten-Bertrand M, Betancur C, Giros B (2000) Behavioural disturbances associated with hyperdopaminergia in dopamine-transporter knockout mice. Behav Pharmacol 11:279–290

CAS  Article  Google Scholar 

Sulzer D, Pothos E, Sung HM, Maidment NT, Hoebel BG, Rayport S (1992) Weak base model of amphetamine action. Ann N Y Acad Sci 654:525–528

CAS  Article  Google Scholar 

Thompson BL, Levitt P, Stanwood GD (2009) Prenatal exposure to drugs: effects on brain development and implications for policy and education. Nat Rev Neurosci 10:303–312. https://doi.org/10.1038/nrn2598

CAS  Article  PubMed  PubMed Central  Google Scholar 

Torres DJ et al (2021) Selenoprotein P Modulates Methamphetamine Enhancement of Vesicular Dopamine Release in Mouse Nucleus Accumbens Via Dopamine D2 Receptors. Front Neurosci 15:631825. https://doi.org/10.3389/fnins.2021.631825

Article  PubMed  PubMed Central  Google Scholar 

Tsai SA, Bendriem RM, Lee CD (2019) The cellular basis of fetal endoplasmic reticulum stress and oxidative stress in drug-induced neurodevelopmental deficits Neurobiol. Stress 10:100145. https://doi.org/10.1016/j.ynstr.2018.100145

Article  Google Scholar 

Volkow ND et al (2001) Loss of dopamine transporters in methamphetamine abusers recovers with protracted abstinence. J Neurosci 21:9414–9418

CAS  Article  Google Scholar 

Wright TE, Schuetter R, Tellei J, Sauvage L (2015) Methamphetamines and pregnancy outcomes. J Addict Med 9:111–117. https://doi.org/10.1097/ADM.0000000000000101

CAS  Article  PubMed  PubMed Central  Google Scholar 

Wu Q, Reith ME, Wightman RM, Kawagoe KT, Garris PA (2001) Determination of release and uptake parameters from electrically evoked dopamine dynamics measured by real-time voltammetry. J Neurosci Methods 112:119–133

CAS  Article  Google Scholar 

Yorgason JG, Luxford W, Kalinec F (2011) vitro and in vivo models of drug ototoxicity: studying the mechanisms of a clinical problem. Expert Opin Drug Metab Toxicol 7:1521–1534. https://doi.org/10.1517/17425255.2011.614231

CAS  Article  PubMed  Google Scholar 

Yorgason JT, Espana RA, Konstantopoulos JK, Weiner JL, Jones SR (2013) Enduring increases in anxiety-like behavior and rapid nucleus accumbens dopamine signaling in socially isolated rats. Eur J Neurosci 37:1022–1031. https://doi.org/10.1111/ejn.12113

Article  PubMed  Google Scholar 

Yorgason JT, Calipari ES, Ferris MJ, Karkhanis AN, Fordahl SC, Weiner JL, Jones SR (2016) Social isolation rearing increases dopamine uptake and psychostimulant potency in the striatum. Neuropharmacology 101:471–479. https://doi.org/10.1016/j.neuropharm.2015.10.025

CAS  Article  PubMed  Google Scholar 

Zuloaga DG, Jacobskind JS, Raber J (2015) Methamphetamine and the hypothalamic-pituitary-adrenal axis. Front Neurosci 9:178. https://doi.org/10.3389/fnins.2015.00178

Article  PubMed 

留言 (0)

沒有登入
gif