Adaptive Changes Allow Targeting of Ferroptosis for Glioma Treatment

Agnihotri S, Zadeh G (2016) Metabolic reprogramming in glioblastoma: the influence of cancer metabolism on epigenetics and unanswered questions. Neuro Oncol 18:160–172. https://doi.org/10.1093/neuonc/nov125

Article  PubMed  Google Scholar 

Alexander BM, Cloughesy TF (2017) Adult Glioblastoma Journal of clinical oncology : official journal of the American Society of. Clin Oncol 35:2402–2409. https://doi.org/10.1200/jco.2017.73.0119

CAS  Article  Google Scholar 

Alvarez SW et al (2017) NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis. Nature 551:639–643. https://doi.org/10.1038/nature24637

CAS  Article  PubMed  PubMed Central  Google Scholar 

Andrews NC, Schmidt PJ (2007) Iron homeostasis Annual review of physiology 69:69–85. https://doi.org/10.1146/annurev.physiol.69.031905.164337

CAS  Article  PubMed  Google Scholar 

Bebber CM, Müller F, Prieto Clemente L, Weber J, von Karstedt S (2020) Ferroptosis in Cancer Cell Biology. Cancers (Basel). https://doi.org/10.3390/cancers12010164

Article  Google Scholar 

Bieging KT, Mello SS, Attardi LD (2014) Unravelling mechanisms of p53-mediated tumour suppression. Nat Rev Cancer 14:359–370. https://doi.org/10.1038/nrc3711

CAS  Article  PubMed  PubMed Central  Google Scholar 

Boonnoy P, Karttunen M, Wong-Ekkabut J (2017) Alpha-tocopherol inhibits pore formation in oxidized bilayers. Phys Chem Chem Phys 19:5699–5704. https://doi.org/10.1039/c6cp08051k

CAS  Article  PubMed  Google Scholar 

Brett-Morris A et al (2014) The polyamine catabolic enzyme SAT1 modulates tumorigenesis and radiation response in GBM. Cancer Res. 74:6925–6934. https://doi.org/10.1158/0008-5472.Can-14-1249

CAS  Article  PubMed  PubMed Central  Google Scholar 

Brown CW, Amante JJ, Goel HL, Mercurio AM (2017) The α6β4 integrin promotes resistance to ferroptosis. J Cell Biol 216:4287–4297. https://doi.org/10.1083/jcb.201701136

CAS  Article  PubMed  PubMed Central  Google Scholar 

Buccarelli M et al (2018) Inhibition of autophagy increases susceptibility of glioblastoma stem cells to temozolomide by igniting ferroptosis Cell death & disease 9:841–841. https://doi.org/10.1038/s41419-018-0864-7

CAS  Article  Google Scholar 

Carneiro BA, El-Deiry WS (2020) Targeting apoptosis in cancer therapy. Nat Rev Clin Oncol 17:395–417. https://doi.org/10.1038/s41571-020-0341-y

Article  PubMed  PubMed Central  Google Scholar 

Castruccio Castracani C et al (2020) Heme Oxygenase-1 and Carbon Monoxide Regulate Growth and Progression in Glioblastoma Cells. Mol Neurobiol. https://doi.org/10.1007/s12035-020-01869-7

Article  PubMed  Google Scholar 

Chang L-C, Chiang S-K, Chen S-E, Yu Y-L, Chou R-H, Chang W-C (2018) Heme oxygenase-1 mediates BAY 11–7085 induced ferroptosis. Cancer Lett 416:124–137. https://doi.org/10.1016/j.canlet.2017.12.025

CAS  Article  PubMed  Google Scholar 

Chao Y et al (2015) Mst1 regulates glioma cell proliferation via the AKT/mTOR signaling pathway. J Neuro-Oncol 121:279–288. https://doi.org/10.1007/s11060-014-1654-4

CAS  Article  Google Scholar 

Chen D, Fan Z, Rauh M, Buchfelder M, Eyupoglu IY, Savaskan N (2017a) ATF4 promotes angiogenesis and neuronal cell death and confers ferroptosis in a xCT-dependent manner. Oncogene 36:5593–5608. https://doi.org/10.1038/onc.2017.146

CAS  Article  PubMed  PubMed Central  Google Scholar 

Chen D, Rauh M, Buchfelder M, Eyupoglu IY, Savaskan N (2017b) The oxido-metabolic driver ATF4 enhances temozolamide chemo-resistance in human gliomas. Oncotarget 8:51164–51176. https://doi.org/10.18632/oncotarget.17737

Article  PubMed  PubMed Central  Google Scholar 

Chen L, Li X, Liu L, Yu B, Xue Y, Liu Y (2015) Erastin sensitizes glioblastoma cells to temozolomide by restraining xCT and cystathionine-γ-lyase function. Oncol Rep 33:1465–1474. https://doi.org/10.3892/or.2015.3712

CAS  Article  PubMed  Google Scholar 

Chen M-S, Wang S-F, Hsu C-Y, Yin P-H, Yeh T-S, Lee H-C, Tseng L-M (2017c) CHAC1 degradation of glutathione enhances cystine-starvation-induced necroptosis and ferroptosis in human triple negative breast cancer cells via the GCN2-eIF2α-ATF4 pathway. Oncotarget 8:114588–114602. https://doi.org/10.18632/oncotarget.23055

Article  PubMed  PubMed Central  Google Scholar 

Chen TC et al (2020a) AR ubiquitination induced by the curcumin analog suppresses growth of temozolomide-resistant glioblastoma through disrupting GPX4-Mediated redox homeostasis. Redox Biol 30:101413. https://doi.org/10.1016/j.redox.2019.101413

CAS  Article  PubMed  Google Scholar 

Chen W, Liu H, Wang T, Bao G, Wang N, Li RC (2019) Downregulation of AIF-2 Inhibits Proliferation, Migration, and Invasion of Human Glioma Cells via Mitochondrial Dysfunction. Journal of molecular neuroscience : MN 68:304–310. https://doi.org/10.1007/s12031-019-01306-y

CAS  Article  PubMed  Google Scholar 

Chen Y et al (2020b) Amentoflavone suppresses cell proliferation and induces cell death through triggering autophagy-dependent ferroptosis in human glioma. Life Sci. https://doi.org/10.1016/j.lfs.2020.117425

Article  PubMed  PubMed Central  Google Scholar 

Chen Y et al (2019) Dihydroartemisinin-induced unfolded protein response feedback attenuates ferroptosis via PERK/ATF4/HSPA5 pathway in glioma cells. J Exp Clin Cancer Res 38:402. https://doi.org/10.1186/s13046-019-1413-7

CAS  Article  PubMed  PubMed Central  Google Scholar 

Cheng J, Fan YQ, Liu BH, Zhou H, Wang JM, Chen QX (2020) ACSL4 suppresses glioma cells proliferation via activating ferroptosis. Oncol Rep 43:147–158. https://doi.org/10.3892/or.2019.7419

CAS  Article  PubMed  Google Scholar 

Chevet E, Hetz C, Samali A (2015) Endoplasmic reticulum stress-activated cell reprogramming in oncogenesis Cancer discovery 5:586–597. https://doi.org/10.1158/2159-8290.Cd-14-1490

CAS  Article  PubMed  Google Scholar 

Chiou B, Neal EH, Bowman AB, Lippmann ES, Simpson IA, Connor JR (2019) Endothelial cells are critical regulators of iron transport in a model of the human blood-brain barrier Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism 39:2117–2131. https://doi.org/10.1177/0271678X18783372

CAS  Article  Google Scholar 

Chu B et al (2019) ALOX12 is required for p53-mediated tumour suppression through a distinct ferroptosis pathway. Nat Cell Biol 21:579–591. https://doi.org/10.1038/s41556-019-0305-6

CAS  Article  PubMed  PubMed Central  Google Scholar 

Colquhoun A (2017) Cell biology-metabolic crosstalk in glioma. Int J Biochem Cell Biol 89:171–181. https://doi.org/10.1016/j.biocel.2017.05.022

CAS  Article  PubMed  Google Scholar 

D’Amico RS, Englander ZK, Canoll P, Bruce JN (2017) Extent of Resection in Glioma-A Review of the Cutting Edge World neurosurgery 103:538–549. https://doi.org/10.1016/j.wneu.2017.04.041

Article  PubMed  Google Scholar 

Dai E, Zhang W, Cong D, Kang R, Wang J, Tang D (2020) AIFM2 blocks ferroptosis independent of ubiquinol metabolism. Biochem Biophys Res Commun 523:966–971. https://doi.org/10.1016/j.bbrc.2020.01.066

CAS  Article  PubMed  Google Scholar 

Daneman R, Prat A (2015) The blood-brain barrier Cold Spring Harb Perspect Biol 7:a020412–a020412. https://doi.org/10.1101/cshperspect.a020412

Article  PubMed  Google Scholar 

Dey S et al (2015) ATF4-dependent induction of heme oxygenase 1 prevents anoikis and promotes metastasis. J Clin Invest 125:2592–2608. https://doi.org/10.1172/JCI78031

Article  PubMed  PubMed Central  Google Scholar 

Dixon SJ et al (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149:1060–1072. https://doi.org/10.1016/j.cell.2012.03.042

CAS  Article  PubMed  PubMed Central  Google Scholar 

Dixon SJ et al (2014) Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis eLife 3:e02523–e02523. https://doi.org/10.7554/eLife.02523

CAS  Article  PubMed  Google Scholar 

Dodson M, Castro-Portuguez R, Zhang DD (2019) NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol 23:101107. https://doi.org/10.1016/j.redox.2019.101107

CAS  Article  PubMed  PubMed Central  Google Scholar 

Doll S et al (2019) FSP1 is a glutathione-independent ferroptosis suppressor. Nature 575:693–698. https://doi.org/10.1038/s41586-019-1707-0

CAS  Article  PubMed  Google Scholar 

Du J et al (2019) DHA inhibits proliferation and induces ferroptosis of leukemia cells through autophagy dependent degradation of ferritin Free radical biology & medicine 131:356–369. https://doi.org/10.1016/j.freeradbiomed.2018.12.011

CAS  Article  Google Scholar 

Du J et al (2020) Identification of Frataxin as a regulator of ferroptosis Redox biology 32:101483–101483. https://doi.org/10.1016/j.redox.2020.101483

CAS  Article  PubMed  Google Scholar 

Eling N, Reuter L, Hazin J, Hamacher-Brady A, Brady NR (2015) Identification of artesunate as a specific activator of ferroptosis in pancreatic cancer cells Oncoscience 2:517–532. https://doi.org/10.18632/oncoscience.160

Article 

留言 (0)

沒有登入
gif