Immunotherapy for triple negative breast cancer: the end of the beginning or the beginning of the end?

Won, K. A., & Spruck, C. (2020). Triple-negative breast cancer therapy: Current and future perspectives (Review). International Journal of Oncology, 57, 1245–1261.

CAS  Article  Google Scholar 

Emens, L. A. (2021). Immunotherapy in triple-negative breast cancer. Cancer Journal, 27, 59–66.

CAS  Article  Google Scholar 

Miles, D., Gligorov, J., André, F., Cameron, D., Schneeweiss, A., Barrios, C., Xu, B., Wardley, A., Kaen, D., Andrade, L., Semiglazov, V., Reinisch, M., Patel, S., Patre, M., Morales, L., Patel, S. L., Kaul, M., Barata, T., & O’Shaughnessy, J. (2021). Primary results from IMpassion131, a double-blind, placebo-controlled, randomised phase III trial of first-line paclitaxel with or without atezolizumab for unresectable locally advanced/metastatic triple-negative breast cancer. Annals of Oncology, 32, 994–100.

CAS  Article  Google Scholar 

Yadav, R., & Redmond, W. L. (2022). Current clinical trial landscape of OX40 agonists. Current Oncology Reports, 24, 951–960.

CAS  Article  Google Scholar 

Stovgaard, E. S., Kümler, I., List-Jensen, K., Roslind, A., Christensen, I. J., Høgdall, E., Nielsen, D., & Balslev, E. (2022). Prognostic and clinicopathologic associations of LAG-3 expression in triple-negative breast cancer. Applied Immunohistochemistry & Molecular Morphology, 30, 62–71.

CAS  Article  Google Scholar 

Licht, J. D., & Bennett, R. L. (2021). Leveraging epigenetics to enhance the efficacy of immunotherapy. Clinical Epigenetics, 13, 115.

CAS  Article  Google Scholar 

Ashraf, Y., Mansouri, H., Laurent-Matha, V., Alcaraz, L. B., Roger, P., Guiu, S., Derocq, D., Robin, G., Michaud, H. A., Delpech, H., Jarlier, M., Pugnière, M., Robert, B., Puel, A., Martin, L., Landomiel, F., Bourquard, T., Achour, O., Fruitier-Arnaudin, I., … Liaudet-Coopman, E. (2019). Immunotherapy of triple-negative breast cancer with cathepsin D-targeting antibodies. Journal for Immunotherapy of Cancer, 7, 29.

Article  Google Scholar 

Ly, S., Anand, V., El-Dana, F., Nguyen, K., Cai, Y., Cai, S., Piwnica-Worms, H., Tripathy, D., Sahin, A. A., Andreeff, M., & Battula, V. L. (2021). Anti-GD2 antibody dinutuximab inhibits triple-negative breast tumor growth by targeting GD2+ breast cancer stem-like cells. Journal for Immunotherapy of Cancer, 9, e001197.

Article  Google Scholar 

Young, A., Ngiow, S. F., Gao, Y., Patch, A. M., Barkauskas, D. S., Messaoudene, M., Lin, G., Coudert, J. D., Stannard, K. A., Zitvogel, L., Degli-Esposti, M. A., Vivier, E., Waddell, N., Linden, J., Huntington, N. D., Souza-Fonseca-Guimaraes, F., & Smyth, M. J. (2018). A2AR adenosine signaling suppresses natural killer cell maturation in the tumor microenvironment. Cancer Research, 78, 1003–1016.

CAS  Article  Google Scholar 

Lan, J., Lu, H., Samanta, D., Salman, S., Lu, Y., & Semenza, G. L. (2018). Hypoxia-inducible factor 1-dependent expression of adenosine receptor 2B promotes breast cancer stem cell enrichment. Proceedings of the National Academy of Sciences of the United States of America, 115, E9640–E9648.

CAS  PubMed  PubMed Central  Google Scholar 

Chen, W., Shen, L., Jiang, J., Zhang, L., Zhang, Z., Pan, J., Ni, C., & Chen, Z. (2021). Antiangiogenic therapy reverses the immunosuppressive breast cancer microenvironment. Biomark Research, 9, 59.

Article  Google Scholar 

Herbst, R. S., Giaccone, G., de Marinis, F., Reinmuth, N., Vergnenegre, A., Barrios, C. H., Morise, M., Felip, E., Andric, Z., Geater, S., Özgüroğlu, M., Zou, W., Sandler, A., Enquist, I., Komatsubara, K., Deng, Y., Kuriki, H., Wen, X., McCleland, M., … Spigel, D. R. (2020). Atezolizumab for first-line treatment of PD-L1-selected patients with NSCLC. New England Journal of Medicine, 383, 1328–1339.

CAS  Article  Google Scholar 

Luo, C., Wang, P., He, S., Zhu, J., Shi, Y., & Wang, J. (2022). Progress and prospect of immunotherapy for triple-negative breast cancer. Frontiers in Oncology, 12, 919072.

Article  Google Scholar 

Lee, D. H., Choi, S., Park, Y., & Jin, H. S. (2021). Mucin1 and Mucin16: Therapeutic targets for cancer therapy. Pharmaceuticals (Basel), 14, 1053.

CAS  Article  Google Scholar 

Stamm, H., Oliveira-Ferrer, L., Grossjohann, E. M., Muschhammer, J., Thaden, V., Brauneck, F., Kischel, R., Müller, V., Bokemeyer, C., Fiedler, W., & Wellbrock, J. (2019). Targeting the TIGIT-PVR immune checkpoint axis as novel therapeutic option in breast cancer. Oncoimmunology, 8, e1674605.

Article  Google Scholar 

Niavarani, S. R., Lawson, C., Boudaud, M., Simard, C., & Tai, L. H. (2020). Oncolytic vesicular stomatitis virus-based cellular vaccine improves triple-negative breast cancer outcome by enhancing natural killer and CD8+ T-cell functionality. Journal for Immunotherapy of Cancer, 8, e000465.

Article  Google Scholar 

留言 (0)

沒有登入
gif