Glucosinolates and Biotic Stress Tolerance in Brassicaceae with Emphasis on Cabbage: A Review

Abuyusuf M, Robin A, Lee J-H et al (2018a) Glucosinolate profiling and expression analysis of glucosinolate biosynthesis genes differentiate white mold resistant and susceptible cabbage lines. Int J Mol Sci 19:4037. https://doi.org/10.3390/ijms19124037

Article  PubMed Central  Google Scholar 

Abuyusuf M, Robin AHK, Kim H-T et al (2018b) Altered glucosinolate profiles and expression of glucosinolate biosynthesis genes in ringspot-resistant and susceptible cabbage lines. Int J Mol Sci. https://doi.org/10.3390/ijms19092833

Article  PubMed  PubMed Central  Google Scholar 

Agrawal AA, Kurashige NS (2003) A role for isothiocyanates in plant resistance against the specialist herbivore Pieris rapae. J Chem Ecol 29:1403–1415. https://doi.org/10.1023/A:1024265420375

CAS  Article  PubMed  Google Scholar 

Ahuja I, Rohloff J, Bones AM (2010) c INRA. Agron Sustain Dev 30:311–348. https://doi.org/10.1051/agro/2009025ï

Article  Google Scholar 

Aires A, Mota VR, Saavedra MJ et al (2009) Initial in vitro evaluations of the antibacterial activities of glucosinolate enzymatic hydrolysis products against plant pathogenic bacteria. J Appl Microbiol 106:2096–2105. https://doi.org/10.1111/j.1365-2672.2009.04181.x

CAS  Article  PubMed  Google Scholar 

Aires A, Dias CSP, Carvalho R et al (2011) Correlations between disease severity, glucosinolate profiles and total phenolics and Xanthomonas campestris pv. campestris inoculation of different Brassicaceae. Sci Hortic (amsterdam) 129:503–510. https://doi.org/10.1016/j.scienta.2011.04.009

CAS  Article  Google Scholar 

Andreasson E, Wretblad S, Granér G et al (2001) The myrosinase-glucosinolate system in the interaction between Leptosphaeria maculans and Brassica napus. Mol Plant Pathol 2:281–286. https://doi.org/10.1046/j.1464-6722.2001.00076.x

CAS  Article  PubMed  Google Scholar 

Arany AM, de Jong TJ, Kim HK et al (2008) Glucosinolates and other metabolites in the leaves of Arabidopsis thaliana from natural populations and their effects on a generalist and a specialist herbivore. Chemoecology 18:65–71. https://doi.org/10.1007/s00049-007-0394-8

CAS  Article  Google Scholar 

Arroyo FT, Rodríguez Arcos R, Araujo AJ et al (2019) Inhibitory effect of the glucosinolate-myrosinase system on Phytophthora cinnamomi and Pythium spiculum. Plant Prot Sci 55:93–101. https://doi.org/10.17221/98/2018-PPS

CAS  Article  Google Scholar 

Bekaert M, Edger PP, Hudson CM et al (2012) Metabolic and evolutionary costs of herbivory defense: systems biology of glucosinolate synthesis. New Phytol 196:596–605. https://doi.org/10.1111/j.1469-8137.2012.04302.x

CAS  Article  PubMed  Google Scholar 

Bidart-Bouzat MG, Kliebenstein DJ (2008) Differential levels of insect herbivory in the field associated with genotypic variation in Glucosinolates in Arabidopsis thaliana. J Chem Ecol 34:1026–1037. https://doi.org/10.1007/s10886-008-9498-z

CAS  Article  PubMed  Google Scholar 

Bohinc T, Trdan S (2016) About previous investigations regarding the role of glucosinolates in controlling Brassica insect pests in slovenia. In: Trdan S (ed) Insecticides resistance. InTech, USA

Google Scholar 

Borpatragohain P, Rose TJ, King GJ (2016) Fire and brimstone: molecular interactions between sulfur and glucosinolate biosynthesis in model and crop Brassicaceae. Front Plant Sci 7:1735. https://doi.org/10.3389/fpls.2016.01735

Article  PubMed  PubMed Central  Google Scholar 

Brader G, Mikkelsen MD, Halkier BA, Tapio Palva E (2006) Altering glucosinolate profiles modulates disease resistance in plants. Plant J 46:758–767. https://doi.org/10.1111/j.1365-313X.2006.02743.x

CAS  Article  PubMed  Google Scholar 

Brekalo JASNA (2015) Synthesis of glucosinolates: gluconasturtiin (2-phenylethyl glucosinolate) and glucomoringin analogue (4’-O-alpha-d-mannopyranosyl) glucosinalbin). Diplomski rad, Kemijsko-tehnološki fakultet, Split

Buxdorf K, Yaffe H, Barda O, Levy M (2013) The effects of glucosinolates and their breakdown products on necrotrophic fungi. PLoS ONE. https://doi.org/10.1371/journal.pone.0070771

Article  PubMed  PubMed Central  Google Scholar 

Calmes B, N’Guyen G, Dumur J et al (2015) Glucosinolate-derived isothiocyanates impact mitochondrial function in fungal cells and elicit an oxidative stress response necessary for growth recovery. Front Plant Sci 06:414. https://doi.org/10.3389/fpls.2015.00414

Article  Google Scholar 

Chalhoub B, Denoeud F, Liu S et al (2014) Early allopolyploid evolution in the post-neolithic Brassica napus oilseed genome. Science 80(345):950–953. https://doi.org/10.1126/science.1253435

CAS  Article  Google Scholar 

Chaplin-Kramer R, Kliebenstein DJ, Chiem A et al (2011) Chemically mediated tritrophic interactions: opposing effects of glucosinolates on a specialist herbivore and its predators. J Appl Ecol 48:880–887. https://doi.org/10.1111/j.1365-2664.2011.01990.x

CAS  Article  Google Scholar 

Choi S-H, Park S, Lim YP et al (2014) Metabolite profiles of glucosinolates in cabbage varieties (Brassica oleracea var. capitata) by season, color, and tissue position introduction. Environ Biotechnol 55:237–247. https://doi.org/10.1007/s13580-014-0009-6

CAS  Article  Google Scholar 

Frerigmann H, Gigolashvili T (2014a) Update on the role of R2R3-MYBs in the regulation of glucosinolates upon sulfur deficiency. Front Plant Sci 5:626. https://doi.org/10.3389/fpls.2014.00626

Article  PubMed  PubMed Central  Google Scholar 

Frerigmann H, Gigolashvili T (2014b) MYB34, MYB51, and MYB122 distinctly regulate indolic glucosinolate biosynthesis in Arabidopsis thaliana. Mol Plant 7:814–828. https://doi.org/10.1093/mp/ssu004

CAS  Article  PubMed  Google Scholar 

Geiselhardt S, Yoneya K, Blenn B et al (2013) Egg laying of cabbage white butterfly (Pieris brassicae) on Arabidopsis thaliana affects subsequent performance of the larvae. PLoS ONE 8:e59661. https://doi.org/10.1371/journal.pone.0059661

CAS  Article  PubMed  PubMed Central  Google Scholar 

Giamoustaris A, Mithen R (1997) Glucosinolates and disease resistance in oilseed rape (Brassica napus ssp. oleifera). Plant Pathol 46:271–275. https://doi.org/10.1046/j.1365-3059.1997.d01-222.x

CAS  Article  Google Scholar 

Gigolashvili T, Yatusevich R, Berger B et al (2007) The R2R3-MYB transcription factor HAG1/MYB28 is a regulator of methionine-derived glucosinolate biosynthesis in Arabidopsis thaliana. Plant J 51:247–261. https://doi.org/10.1111/j.1365-313X.2007.03133.x

CAS  Article  PubMed  Google Scholar 

Gigolashvili T, Engqvist M, Yatusevich R et al (2008) HAG2/MYB76 and HAG3/MYB29 exert a specific and coordinated control on the regulation of aliphatic glucosinolate biosynthesis in Arabidopsis thaliana. New Phytol 177:627–642. https://doi.org/10.1111/j.1469-8137.2007.02295.x

CAS  Article  PubMed  Google Scholar 

Grubb CD, Zipp BJ, Ludwig-Müller J et al (2004) Arabidopsis glucosyltransferase UGT74B1 functions in glucosinolate biosynthesis and auxin homeostasis. Plant J 40:893–908. https://doi.org/10.1111/j.1365-313X.2004.02261.x

CAS  Article  PubMed  Google Scholar 

Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol. https://doi.org/10.1146/annurev.arplant.57.032905.105228

Article  PubMed  Google Scholar 

Hanschen FS, Pfitzmann M, Witzel K et al (2018) Differences in the enzymatic hydrolysis of glucosinolates increase the defense metabolite diversity in 19 Arabidopsis thaliana accessions. Plant Physiol Biochem 124:126–135. https://doi.org/10.1016/j.plaphy.2018.01.009

CAS  Article  PubMed  Google Scholar 

Hirai MY, Sugiyama K, Sawada Y et al (2007) Omics-based identification of Arabidopsis Myb transcription factors regulating aliphatic glucosinolate biosynthesis. Proc Natl Acad Sci 104:6478–6483. https://doi.org/10.1073/pnas.0611629104

CAS  Article  PubMed  PubMed Central  Google Scholar 

Hopkins RJ, van Dam NM, van Loon JJA (2009) Role of glucosinolates in insect-plant relationships and multitrophic interactions. Annu Rev Entomol 54:57–83. https://doi.org/10.1146/annurev.ento.54.110807.090623

CAS  Article  PubMed  Google Scholar 

Ishida M, Hara M, Fukino N et al (2014) Glucosinolate metabolism, functionality and breeding for the improvement of Brassicaceae vegetables. Breed Sci 64:48–59. https://doi.org/10.1270/jsbbs.64.48

CAS  Article  PubMed  PubMed Central  Google Scholar 

Jeon J, Kim JK, Kim H et al (2018) Transcriptome analysis and metabolic profiling of green and red kale (Brassica oleracea var. acephala) seedlings. Food Chem 241:7–13. https://doi.org/10.1016/J.FOODCHEM.2017.08.067

CAS  Article  PubMed  Google Scholar 

Johansson ON, Fantozzi E, Fahlberg P et al (2014) Role of the penetration-resistance genes PEN1, PEN2 and PEN3 in the hypersensitive response and race-specific resistance in Arabidopsis thaliana. Plant J 79:466–476. https://doi.org/10.1111/tpj.12571

CAS  Article  PubMed  Google Scholar 

Kelly PJ, Bones A, Rossiter JT (1998) Sub-cellular immunolocalization of the glucosinolate sinigrin in seedlings of Brassica juncea. Planta 206:370–377. https://doi.org/10.1007/s004250050412

CAS  Article  PubMed  Google Scholar 

Kim HW, Ko HC, Baek HJ et al (2016) Identification and quantification of glucosinolates in Korean leaf mustard germplasm (Brassica juncea var integrifolia.) by liquid chromatography–electrospray ionization/tandem mass spectrometry. Eur Food Res Technol 242:1479–1484. https://doi.org/10.1007/s00217-016-2648-6

CAS  Article  Google Scholar 

Kim MJ, Chiu Y-C, Kim NK et al (2017) Cultivar-specific changes in primary and secondary metabolites in Pak Choi (Brassica Rapa, Chinensis Group) by methyl jasmonate. Int J Mol Sci. https://doi.org/10.3390/ijms18051004

Article  PubMed  PubMed Central  Google Scholar 

Kliebenstein D, Pedersen D, Barker B, Mitchell-Olds T (2002) Comparative analysis of quantitative trait loci controlling glucosinolates, myrosinase and insect resistance in Arabidopsis thaliana. Genetics 161:325–332

CAS  Article  Google Scholar 

Koroleva OA, Davies A, Deeken R et al (2000) Identification of a new glucosinolate-rich cell type in arabidopsis flower stalk. Plant Physiol 124:599–608. https://doi.org/10.1104/pp.124.2.599

CAS  Article  PubMed 

留言 (0)

沒有登入
gif