Histone modification in podocyte injury of diabetic nephropathy

Qi C, Mao X, Zhang Z, Wu H (2017) Classification and differential diagnosis of diabetic nephropathy. J Diabetes Res 2017:8637138

PubMed  PubMed Central  Google Scholar 

Nagata M (2016) Podocyte injury and its consequences. Kidney Int 89(6):1221–1230

CAS  PubMed  Article  Google Scholar 

White KE, Bilous RW (2004) Structural alterations to the podocyte are related to proteinuria in type 2 diabetic patients. Nephrol Dial Transplant 19(6):1437–1440

PubMed  Article  Google Scholar 

Lan J, Lepikhov K, Giehr P, Walter J (2017) Histone and DNA methylation control by H3 serine 10/threonine 11 phosphorylation in the mouse zygote. Epigenetics Chromatin 10:5

PubMed  PubMed Central  Article  CAS  Google Scholar 

Nathan DM (2014) The diabetes control and complications trial/epidemiology of diabetes interventions and complications study at 30 years: overview. Diabetes Care 37(1):9–16

CAS  PubMed  Article  Google Scholar 

Kato M, Natarajan R (2019) Epigenetics and epigenomics in diabetic kidney disease and metabolic memory. Nat Rev Nephrol 15(6):327–345

PubMed  PubMed Central  Article  Google Scholar 

Epidemiology of Diabetes Interventions and Complications (EDIC) (1999) Design, implementation, and preliminary results of a long-term follow-up of the Diabetes Control and Complications Trial cohort. Diabetes Care 22(1): 99–111

Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A (2009) An operational definition of epigenetics. Genes Dev 23(7):781–783

CAS  PubMed  PubMed Central  Article  Google Scholar 

Lu Z, Liu N, Wang F (2017) Epigenetic regulations in diabetic nephropathy. J Diabetes Res 2017:7805058

PubMed  PubMed Central  Google Scholar 

Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403(6765):41–45

CAS  PubMed  Article  Google Scholar 

Kornberg RD, Lorch Y (1999) Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98(3):285–294

CAS  PubMed  Article  Google Scholar 

Voigt P, Reinberg D (2011) Histone tails: ideal motifs for probing epigenetics through chemical biology approaches. ChemBioChem 12(2):236–252

CAS  PubMed  Article  Google Scholar 

Kimura H (2013) Histone modifications for human epigenome analysis. J Hum Genet 58(7):439–445

CAS  PubMed  Article  Google Scholar 

Jin J, Gong J, Zhao L, Zhang H, He Q, Jiang X (2019) Inhibition of high mobility group box 1 (HMGB1) attenuates podocyte apoptosis and epithelial-mesenchymal transition by regulating autophagy flux. J Diabetes 11(10):826–836

CAS  PubMed  Article  Google Scholar 

Lu CC, Wang GH, Lu J, Chen PP, Zhang Y, Hu ZB et al (2019) Role of podocyte injury in glomerulosclerosis. Adv Exp Med Biol 1165:195–232

CAS  PubMed  PubMed Central  Article  Google Scholar 

Liapis H, Romagnani P, Anders HJ (2013) New insights into the pathology of podocyte loss: mitotic catastrophe. Am J Pathol 183(5):1364–1374

CAS  PubMed  PubMed Central  Article  Google Scholar 

Kopp JB, Anders HJ, Susztak K, Podesta MA, Remuzzi G, Hildebrandt F et al (2020) Podocytopathies. Nat Rev Dis Primers 6(1):68

PubMed  PubMed Central  Article  Google Scholar 

Al-Malki AL (2014) Assessment of urinary osteopontin in association with podocyte for early predication of nephropathy in diabetic patients. Dis Markers 2014:493736

PubMed  PubMed Central  Article  CAS  Google Scholar 

Dai H, Liu Q, Liu B (2017) Research progress on mechanism of podocyte depletion in diabetic nephropathy. J Diabetes Res 2017:2615286

PubMed  PubMed Central  Article  CAS  Google Scholar 

Schiffer M, Bitzer M, Roberts IS, Kopp JB, Ten DP, Mundel P et al (2001) Apoptosis in podocytes induced by TGF-beta and Smad7. J Clin Invest 108(6):807–816

CAS  PubMed  PubMed Central  Article  Google Scholar 

Maquigussa E, Paterno JC, de Oliveira PG, Da SPM, Varela VA, Da SNA et al (2018) Klotho and PPAR gamma activation mediate the renoprotective effect of losartan in the 5/6 nephrectomy model. Front Physiol 9:1033

PubMed  PubMed Central  Article  Google Scholar 

Long YC, Zierath JR (2006) AMP-activated protein kinase signaling in metabolic regulation. J Clin Invest 116(7):1776–1783

CAS  PubMed  PubMed Central  Article  Google Scholar 

Eid AA, Ford BM, Block K, Kasinath BS, Gorin Y, Ghosh-Choudhury G et al (2010) AMP-activated protein kinase (AMPK) negatively regulates Nox4-dependent activation of p53 and epithelial cell apoptosis in diabetes. J Biol Chem 285(48):37503–37512

CAS  PubMed  PubMed Central  Article  Google Scholar 

Susztak K, Raff AC, Schiffer M, Bottinger EP (2006) Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes 55(1):225–233

CAS  PubMed  Article  Google Scholar 

Cui FQ, Wang YF, Gao YB, Meng Y, Cai Z, Shen C et al (2019) Effects of BSF on podocyte apoptosis via regulating the ROS-mediated PI3K/AKT pathway in DN. J Diabetes Res 2019:9512406

PubMed  PubMed Central  Google Scholar 

Chen X, Liu W, Xiao J, Zhang Y, Chen Y, Luo C et al (2020) FOXO3a accumulation and activation accelerate oxidative stress-induced podocyte injury. Faseb J 34(10):13300–13316

CAS  PubMed  Article  Google Scholar 

Gui D, Guo Y, Wang F, Liu W, Chen J, Chen Y et al (2012) Astragaloside IV, a novel antioxidant, prevents glucose-induced podocyte apoptosis in vitro and in vivo. PLoS ONE 7(6):e39824

CAS  PubMed  PubMed Central  Article  Google Scholar 

Araujo M, Wilcox CS (2014) Oxidative stress in hypertension: role of the kidney. Antioxid Redox Signal 20(1):74–101

CAS  PubMed  PubMed Central  Article  Google Scholar 

Chung SS, Ho EC, Lam KS, Chung SK (2003) Contribution of polyol pathway to diabetes-induced oxidative stress. J Am Soc Nephrol 14(8 Suppl 3):S233–S236

CAS  PubMed  Article  Google Scholar 

Forbes JM, Cooper ME, Oldfield MD, Thomas MC (2003) Role of advanced glycation end products in diabetic nephropathy. J Am Soc Nephrol 14(8 Suppl 3):S254–S258

CAS  PubMed  Article  Google Scholar 

Yamagishi S, Matsui T (2010) Advanced glycation end products, oxidative stress and diabetic nephropathy. Oxid Med Cell Longev 3(2):101–108

PubMed  PubMed Central  Article  Google Scholar 

Ha H, Lee HB (2005) Reactive oxygen species amplify glucose signalling in renal cells cultured under high glucose and in diabetic kidney. Nephrology (Carlton) 10(Suppl):S7–S10

CAS  Article  Google Scholar 

Glick D, Barth S, Macleod KF (2010) Autophagy: cellular and molecular mechanisms. J Pathol 221(1):3–12

CAS  PubMed  PubMed Central  Article  Google Scholar 

Liu N, Shi Y, Zhuang S (2016) Autophagy in chronic kidney diseases. Kidney Dis (Basel) 2(1):37–45

Article  Google Scholar 

Tagawa A, Yasuda M, Kume S, Yamahara K, Nakazawa J, Chin-Kanasaki M et al (2016) Impaired podocyte autophagy exacerbates proteinuria in diabetic nephropathy. Diabetes 65(3):755–767

CAS  PubMed  Article  Google Scholar 

Liu N, Xu L, Shi Y, Zhuang S (2017) Podocyte autophagy: a potential therapeutic target to prevent the progression of diabetic nephropathy. J Diabetes Res 2017:3560238

PubMed  PubMed Central  Google Scholar 

Hartleben B, Godel M, Meyer-Schwesinger C, Liu S, Ulrich T, Kobler S et al (2010) Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice. J Clin Invest 120(4):1084–1096

CAS  PubMed  PubMed Central  Article  Google Scholar 

Liu J, Li QX, Wang XJ, Zhang C, Duan YQ, Wang ZY et al (2016) beta-Arrestins promote podocyte injury by inhibition of autophagy in diabetic nephropathy. Cell Death Dis 7:e2183

CAS  PubMed  PubMed Central  Article  Google Scholar 

Inoki K, Mori H, Wang J, Suzuki T, Hong S, Yoshida S et al (2011) mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice. J Clin Invest 121(6):2181–2196

CAS  PubMed  PubMed Central  Article  Google Scholar 

留言 (0)

沒有登入
gif