Polypeptide N-acetylgalactosamine transferase 3: a post-translational writer on human health

Beltrao P, Bork P, Krogan NJ, Van Noort V (2013) Evolution and functional cross-talk of protein post-translational modifications. Mol Syst Biol 9:714. https://doi.org/10.1002/msb.201304521

Article  PubMed  PubMed Central  Google Scholar 

Pieroni L, Iavarone F, Olianas A et al (2020) Enrichments of post-translational modifications in proteomic studies. J Sep Sci 43:313–336. https://doi.org/10.1002/jssc.201900804

CAS  Article  PubMed  Google Scholar 

Gong F, Chiu LY, Miller KM (2016) Acetylation reader proteins: linking acetylation signaling to genome maintenance and cancer. PLoS Genet 12:e1006272. https://doi.org/10.1371/journal.pgen.1006272

CAS  Article  PubMed  PubMed Central  Google Scholar 

Olsen JV, Vermeulen M, Santamaria A et al (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3:ra3. https://doi.org/10.1126/scisignal.2000475

Beli P, Lukashchuk N, Wagner SA et al (2012) Proteomic investigations reveal a role for RNA processing factor THRAP3 in the DNA damage response. Mol Cell 46:212–225. https://doi.org/10.1016/J.MOLCEL.2012.01.026

CAS  Article  PubMed  PubMed Central  Google Scholar 

Oliveira AP, Sauer U (2012) The importance of post-translational modifications in regulating Saccharomyces cerevisiae metabolism. FEMS Yeast Res 12:104–117. https://doi.org/10.1111/J.1567-1364.2011.00765.X

CAS  Article  PubMed  Google Scholar 

Rigbolt KTG, Prokhorova TA, Akimov V et al (2011) System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Sci Signal 4:rs3. https://doi.org/10.1126/scisignal.2001570

Dix MM, Simon GM, Wang C et al (2012) Functional interplay between caspase cleavage and phosphorylation sculpts the apoptotic proteome. Cell 150:426–440. https://doi.org/10.1016/J.CELL.2012.05.040

CAS  Article  PubMed  PubMed Central  Google Scholar 

Nardozzi J, Wenta N, Yasuhara N et al (2010) Molecular basis for the recognition of phosphorylated STAT1 by importin alpha5. J Mol Biol 402:83–100. https://doi.org/10.1016/J.JMB.2010.07.013

CAS  Article  PubMed  PubMed Central  Google Scholar 

Ideker T, Krogan NJ (2012) Differential network biology. Mol Syst Biol 8:565. https://doi.org/10.1038/msb.2011.99

Article  PubMed  PubMed Central  Google Scholar 

Van Den Steen P, Rudd PM, Dwek RA, Opdenakker G (1998) Concepts and principles of O-linked glycosylation. Crit Rev Biochem Mol Biol 33:151–208. https://doi.org/10.1080/10409239891204198

Article  PubMed  Google Scholar 

Hart GW, Housley MP, Slawson C (2007) Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins. Nature 446:1017–1022. https://doi.org/10.1038/NATURE05815

CAS  Article  PubMed  Google Scholar 

Varki A (2017) Biological roles of glycans. Glycobiology 27:3–49. https://doi.org/10.1093/GLYCOB/CWW086

CAS  Article  PubMed  Google Scholar 

Schuman J, Qiu D, Koganty RR et al (2000) Glycosylations versus conformational preferences of cancer associated mucin core. Glycoconj J 17:835–848. https://doi.org/10.1023/A:1010909011496

CAS  Article  PubMed  Google Scholar 

Magalhães A, Duarte HO, Reis CA (2021) The role of O-glycosylation in human disease. Mol Aspects Med 79:100964. https://doi.org/10.1016/j.mam.2021.100964

CAS  Article  PubMed  Google Scholar 

Halim A, Brinkmalm G, Rüetschi U et al (2011) Site-specific characterization of threonine, serine, and tyrosine glycosylations of amyloid precursor protein/amyloid β-peptides in human cerebrospinal fluid. Proc Natl Acad Sci U S A 108:11848–11853. https://doi.org/10.1073/pnas.1102664108

Article  PubMed  PubMed Central  Google Scholar 

Bennett EP, Mandel U, Clausen H et al (2012) Control of mucin-type O-glycosylation: a classification of the polypeptide GalNAc-transferase gene family. Glycobiology 22:736–756. https://doi.org/10.1093/glycob/cwr182

CAS  Article  PubMed  Google Scholar 

Lombard V, Golaconda Ramulu H, Drula E et al (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:D490–D495. https://doi.org/10.1093/NAR/GKT1178

CAS  Article  PubMed  Google Scholar 

Becker JL, Tran DT, Tabak LA (2018) Members of the GalNAc-T family of enzymes utilize distinct Golgi localization mechanisms. Glycobiology 28:841–848. https://doi.org/10.1093/glycob/cwy071

CAS  Article  PubMed  PubMed Central  Google Scholar 

Paulson JC, Colley KJ (1989) Glycosyltransferases. Structure, localization, and control of cell type-specific glycosylation. J Biol Chem 264:17615–17618. https://doi.org/10.1016/S0021-9258(19)84610-0

CAS  Article  PubMed  Google Scholar 

Hazes B (1996) The (QxW)3 domain: a flexible lectin scaffold. Protein Sci 5:1490–1501. https://doi.org/10.1002/PRO.5560050805

CAS  Article  PubMed  PubMed Central  Google Scholar 

Imberty A, Piller V, Piller F, Breton C (1997) Fold recognition and molecular modeling of a lectin-like domain in UDP-GalNac:polypeptide N-acetylgalactosaminyltransferases. Protein Eng 10:1353–1356. https://doi.org/10.1093/PROTEIN/10.12.1353

CAS  Article  PubMed  Google Scholar 

Brockhausen I, Stanley P (2017) O-GalNAc glycans. In: Essentials of glycobiology. Cold Spring Harbor Laboratory Press 1–9

Daniel EJP, Las Rivas M, Lira-Navarrete E et al (2020) Ser and Thr acceptor preferences of the GalNAc-Ts vary among isoenzymes to modulate mucin-type O-glycosylation. Glycobiology 30:910–922. https://doi.org/10.1093/GLYCOB/CWAA036

CAS  Article  PubMed  PubMed Central  Google Scholar 

Kellokumpu S, Hassinen A, Glumoff T (2016) Glycosyltransferase complexes in eukaryotes: long-known, prevalent but still unrecognized. Cell Mol Life Sci 73:305–325. https://doi.org/10.1007/s00018-015-2066-0

CAS  Article  PubMed  Google Scholar 

Schwartz NB, Rodén L, Dorfman A (1974) Biosynthesis of chondroitin sulfate: interaction between xylosyltransferase and galactosyltransferase. Biochem Biophys Res Commun 56:717–724. https://doi.org/10.1016/0006-291X(74)90664-0

CAS  Article  PubMed  Google Scholar 

Fishman PH (1974) Normal and abnormal biosynthesis of gangliosides. Chem Phys Lipids 13:305–326. https://doi.org/10.1016/0009-3084(74)90006-1

CAS  Article  PubMed  Google Scholar 

Maccioni HJF, Quiroga R, Spessott W (2011) Organization of the synthesis of glycolipid oligosaccharides in the Golgi complex. FEBS Lett 585:1691–1698

CAS  Article  Google Scholar 

Hassinen A, Pujol FM, Kokkonen N et al (2011) Functional organization of Golgi N- and O-glycosylation pathways involves pH-dependent complex formation that is impaired in cancer cells. J Biol Chem 286:38329–38340. https://doi.org/10.1074/JBC.M111.277681

CAS  Article  PubMed  PubMed Central  Google Scholar 

Ferrari ML, Gomez GA, MacCioni HJF (2012) Spatial organization and stoichiometry of N-terminal domain-mediated glycosyltransferase complexes in Golgi membranes determined by fret microscopy. Neurochem Res 37:1325–1334. https://doi.org/10.1007/S11064-012-0741-1

CAS  Article  PubMed  Google Scholar 

Azarkan M, Martinez-Rodriguez S, Buts L et al (2011) The plasticity of the β-trefoil fold constitutes an evolutionary platform for protease inhibition. J Biol Chem 286:43726–43734. https://doi.org/10.1074/JBC.M111.291310

CAS  Article  PubMed  PubMed Central  Google Scholar 

Žurga S, Pohleven J, Kos J, Sabotič J (2015) β-Trefoil structure enables interactions between lectins and protease inhibitors that regulate their biological functions. J Biochem 158:83–90. https://doi.org/10.1093/JB/MVV025

Article  PubMed  Google Scholar 

Lorenz V, Ditamo Y, Cejas RB et al (2016) Extrinsic functions of lectin domains in O-N-acetylgalactosamine glycan biosynthesis. J Biol Chem 291:25339–25350. https://doi.org/10.1074/jbc.M116.740795

CAS  Article  PubMed  PubMed Central  Google Scholar 

Hassan H, Reis CA, Bennett EP et al (2000) The lectin domain of UDP-N-acetyl-D-galactosamine: polypeptide N-acetylgalactosaminyltransferase-T4 directs its glycopeptide specificities. J Biol Chem 275:38197–38205. https://doi.org/10.1074/jbc.M005783200

CAS  Article  PubMed  Google Scholar 

Tenno M, Kézdy F, Elhammer AP, Kurosaka A (2002) Function of the lectin domain of polypeptide N-acetylgalactosaminyltransferase 1. Biochem Biophys Res Commun 298:755–759. https://doi.org/10.1016/s0006-291x(02)02549-4

CAS  Article  PubMed  Google Scholar 

Yoshimura Y, Nudelman AS, Levery SB et al (2012) Elucidation of the sugar recognition ability of the lectin domain of UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase 3 by using unnatural glycopeptide substrates. Glycobiology 22:429–438. https://doi.org/10.1093/glycob/cwr159

CAS  Article  PubMed  Google Scholar 

Wandall HH, Irazoqui F, Tarp MA et al (2007) The lectin domains of polypeptide GalNAc-transferases exhibit carbohydrate-binding specificity for GalNAc: lectin binding to GalNAc-glycopeptide substrates is required for high density GalNAc-O-glycosylation. Glycobiology 17:374–387. https://doi.org/10.1093/glycob/cwl082

CAS  Article  PubMed  Google Scholar 

Pedersen JW, Bennett EP, Schjoldager KTBG et al (2011) Lectin domains of polypeptide GalNAc transferases exhibit glycopeptide binding specificity. J Biol Chem 286:32684–32696. https://doi.org/10.1074/jbc.M111.273722

CAS  Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif