Temperature Control in Hypoxic-Ischemic Brain Injury—a Focused Update

Cardiac Arrest Registry to Enhance Survival. 2021 CARES Annual Report. [Internet]. 2021. [updated 2021; cited 2022 July 18]. Available from: https://mycares.net/sitepages/uploads/2022/2021_flipbook/index.html?page=1.

Odom E, Nakajima Y, Vellano K, Al-Araji R, Coleman King S, Zhang Z, et al. Trends in EMS-attended out-of-hospital cardiac arrest survival, United States 2015–2019. Resuscitation. 2022.

Kaminogo M, Suyama K, Ichikura A, Onizuka M, Shibata S. Anoxic depolarization determines ischemic brain injury. Neurol Res. 1998;20(4):343–8.

CAS  Article  Google Scholar 

Sekhon MS, Ainslie PN, Griesdale DE. Clinical pathophysiology of hypoxic ischemic brain injury after cardiac arrest: a “two-hit” model. Crit Care. 2017;21(1):90.

Article  Google Scholar 

Williams GR Jr, Spencer FC. The clinical use of hypothermia following cardiac arrest. Ann Surg. 1958;148(3):462–8.

Article  Google Scholar 

Benson DW, Williams GR Jr, Spencer FC, Yates AJ. The use of hypothermia after cardiac arrest. Anesth Analg. 1959;38:423–8.

CAS  Article  Google Scholar 

Colbourne F, Corbett D. Delayed and prolonged post-ischemic hypothermia is neuroprotective in the gerbil. Brain Res. 1994;654(2):265–72.

CAS  Article  Google Scholar 

Colbourne F, Corbett D. Delayed postischemic hypothermia: a six month survival study using behavioral and histological assessments of neuroprotection. J Neurosci. 1995;15(11):7250–60.

CAS  Article  Google Scholar 

Weinrauch V, Safar P, Tisherman S, Kuboyama K, Radovsky A. Beneficial effect of mild hypothermia and detrimental effect of deep hypothermia after cardiac arrest in dogs. Stroke. 1992;23(10):1454–62.

CAS  Article  Google Scholar 

Hypothermia after Cardiac Arrest Study G. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med. 2002;346(8):549–56.

Bernard SA, Gray TW, Buist MD, Jones BM, Silvester W, Gutteridge G, et al. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med. 2002;346(8):557–63.

Article  Google Scholar 

Nielsen N, Wetterslev J, Cronberg T, Erlinge D, Gasche Y, Hassager C, et al. Targeted temperature management at 33 degrees C versus 36 degrees C after cardiac arrest. N Engl J Med. 2013;369(23):2197–206.

CAS  Article  Google Scholar 

Johnson NJ, Danielson KR, Counts CR, Ruark K, Scruggs S, Hough CL, et al. Targeted temperature management at 33 versus 36 degrees: a retrospective cohort study. Crit Care Med. 2020;48(3):362–9.

Article  Google Scholar 

• Lascarrou JB, Merdji H, Le Gouge A, Colin G, Grillet G, Girardie P, et al. Targeted temperature management for cardiac arrest with nonshockable rhythm. N Engl J Med. 2019;381(24):2327–37. This study enrolled only cardiac arrest patients with non-shockable rhythms, a population either missing or in small numbers in most major TTM trials, and found better neurological outcomes in patients cooled to 33°C compared to 37 °C.

Bro-Jeppesen J, Hassager C, Wanscher M, Soholm H, Thomsen JH, Lippert FK, et al. Post-hypothermia fever is associated with increased mortality after out-of-hospital cardiac arrest. Resuscitation. 2013;84(12):1734–40.

Article  Google Scholar 

•• Dankiewicz J, Cronberg T, Lilja G, Jakobsen JC, Levin H, Ullen S, et al. Hypothermia versus normothermia after out-of-hospital cardiac arrest. N Engl J Med. 2021;384(24):2283–94. The largest randomized controlled trial in the field of TTM to date; this study showed no difference in mortality or long-term neurological outcome between cooling to 33 °C or controlled normothermia.

Fernando SM, Di Santo P, Sadeghirad B, Lascarrou JB, Rochwerg B, Mathew R, et al. Targeted temperature management following out-of-hospital cardiac arrest: a systematic review and network meta-analysis of temperature targets. Intensive Care Med. 2021;47(10):1078–88.

Article  Google Scholar 

Le May M, Osborne C, Russo J, So D, Chong AY, Dick A, et al. Effect of moderate vs mild therapeutic hypothermia on mortality and neurologic outcomes in comatose survivors of out-of-hospital cardiac arrest: the CAPITAL CHILL randomized clinical trial. JAMA. 2021;326(15):1494–503.

Article  Google Scholar 

Nutma S, Tjepkema-Cloostermans MC, Ruijter BJ, Tromp SC, van den Bergh WM, Foudraine NA, et al. Effects of targeted temperature management at 33 degrees C vs. 36 degrees C on comatose patients after cardiac arrest stratified by the severity of encephalopathy. Resuscitation. 2022;173:147–53.

Kuboyama K, Safar P, Radovsky A, Tisherman SA, Stezoski SW, Alexander H. Delay in cooling negates the beneficial effect of mild resuscitative cerebral hypothermia after cardiac arrest in dogs: a prospective, randomized study. Crit Care Med. 1993;21(9):1348–58.

CAS  Article  Google Scholar 

Kim F, Nichol G, Maynard C, Hallstrom A, Kudenchuk PJ, Rea T, et al. Effect of prehospital induction of mild hypothermia on survival and neurological status among adults with cardiac arrest: a randomized clinical trial. JAMA. 2014;311(1):45–52.

CAS  Article  Google Scholar 

Bernard SA, Smith K, Finn J, Hein C, Grantham H, Bray JE, et al. Induction of therapeutic hypothermia during out-of-hospital cardiac arrest using a rapid infusion of cold saline: the RINSE trial (Rapid Infusion of Cold Normal Saline). Circulation. 2016;134(11):797–805.

CAS  Article  Google Scholar 

Lindsay PJ, Buell D, Scales DC. The efficacy and safety of pre-hospital cooling after out-of-hospital cardiac arrest: a systematic review and meta-analysis. Crit Care. 2018;22(1):66.

Article  Google Scholar 

• Nordberg P, Taccone FS, Truhlar A, Forsberg S, Hollenberg J, Jonsson M, et al. Effect of trans-nasal evaporative intra-arrest cooling on functional neurologic outcome in out-of-hospital cardiac arrest: the PRINCESS randomized clinical trial. JAMA. 2019;321(17):1677–85. This trial suggested that trans-nasal evaporative cooling prior to hopsital arrival, despite leading to faster goal temperatures, did not significantly improve survival or neurological outcome.

Perman SM, Ellenberg JH, Grossestreuer AV, Gaieski DF, Leary M, Abella BS, et al. Shorter time to target temperature is associated with poor neurologic outcome in post-arrest patients treated with targeted temperature management. Resuscitation. 2015;88:114–9.

Article  Google Scholar 

Kirkegaard H, Soreide E, de Haas I, Pettila V, Taccone FS, Arus U, et al. Targeted temperature management for 48 vs 24 hours and neurologic outcome after out-of-hospital cardiac arrest: a randomized clinical trial. JAMA. 2017;318(4):341–50.

Article  Google Scholar 

Muerer WJ, Silbergleit R, Geocadin R. Influence of Cooling Duration on Efficacy in Cardiac Arrest Patients. 2020.

Calabro L, Bougouin W, Cariou A, De Fazio C, Skrifvars M, Soreide E, et al. Effect of different methods of cooling for targeted temperature management on outcome after cardiac arrest: a systematic review and meta-analysis. Crit Care. 2019;23(1):285.

Article  Google Scholar 

Bartlett ES, Valenzuela T, Idris A, Deye N, Glover G, Gillies MA, et al. Systematic review and meta-analysis of intravascular temperature management vs. surface cooling in comatose patients resuscitated from cardiac arrest. Resuscitation. 2020;146:82–95.

Alnabelsi TS, Faulkner SP, Cook M, Freeman K, Shelton J, Paranzino M, et al. Passive antipyretic therapy is not as effective as invasive hypothermia for maintaining normothermia after cardiac arrest. Am J Emerg Med. 2021;50:202–6.

Article  Google Scholar 

Polderman KH, Herold I. Therapeutic hypothermia and controlled normothermia in the intensive care unit: practical considerations, side effects, and cooling methods. Crit Care Med. 2009;37(3):1101–20.

Article  Google Scholar 

Taccone FS, Picetti E, Vincent JL. High quality targeted temperature management (TTM) after cardiac arrest. Crit Care. 2020;24(1):6.

Article  Google Scholar 

Rittenberger JC, Kelly E, Jang D, Greer K, Heffner A. Successful outcome utilizing hypothermia after cardiac arrest in pregnancy: a case report. Crit Care Med. 2008;36(4):1354–6.

Article  Google Scholar 

Chauhan A, Musunuru H, Donnino M, McCurdy MT, Chauhan V, Walsh M. The use of therapeutic hypothermia after cardiac arrest in a pregnant patient. Ann Emerg Med. 2012;60(6):786–9.

Article  Google Scholar 

Wible EF, Kass JS, Lopez GA. A report of fetal demise during therapeutic hypothermia after cardiac arrest. Neurocrit Care. 2010;13(2):239–42.

Article  Google Scholar 

•• Nolan JP, Sandroni C, Andersen LW, Bottiger BW, Cariou A, Cronberg T, et al. ERC-ESICM guidelines on temperature control after cardiac arrest in adults. Resuscitation. 2022;172:229–36. Focused and updated guidelines regarding TTM after cardiac arrest, based on the most recent and higest quality evidence available in the field.

Berg KM, Soar J, Andersen LW, Bottiger BW, Cacciola S, Callaway CW, et al. Adult Advanced Life Support: 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Circulation. 2020;142(16_suppl_1):S92-S139.

Caro-Codon J, Rey JR, Lopez-de-Sa E, Gonzalez Fernandez O, Rosillo SO, Armada E, et al. Long-term neurological outcomes in out-of-hospital cardiac arrest patients treated with targeted-temperature management. Resuscitation. 2018;133:33–9.

Article  Google Scholar 

Elmer J, He Z, May T, Osborn E, Moberg R, Kemp S, et al. Precision care in cardiac arrest: ICECAP (PRECICECAP) study protocol and informatics approach. Neurocrit Care. 2022.

留言 (0)

沒有登入
gif