Epigenetic regulation of pancreatic adenocarcinoma in the era of cancer immunotherapy

Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2021. CA Cancer J Clin. 2021;71:7–33.

PubMed  Article  Google Scholar 

Cancer Facts & Figures 2020. Atlanta: American Cancer Society; 2021.Avalable at https://cancerstatisticscenter.cancer.org/#!/cancer-site/Pancreas. Accessed 31 Mar 2022

Ferrone CR, Pieretti-Vanmarcke R, Bloom JP, et al. Pancreatic ductal adenocarcinoma: long-term survival does not equal cure. Surgery. 2012;152:S43–9.

PubMed  Article  Google Scholar 

Collisson EA, Sadanandam A, Olson P, et al. Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. Nat Med. 2011;17:500–3.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Moffitt RA, Marayati R, Flate EL, et al. Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma. Nat Genet. 2015;47:1168–78.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Bailey P, Chang DK, Nones K, et al. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature. 2016;531:47–52.

CAS  PubMed  Article  Google Scholar 

Ciliberto D, Staropoli N, Chiellino S, et al. Systematic review and meta-analysis on targeted therapy in advanced pancreatic cancer. Pancreatology. 2016;16:249–58.

PubMed  Article  Google Scholar 

Egger G, Liang G, Aparicio A, et al. Epigenetics in human disease and prospects for epigenetic therapy. Nature. 2004;429:457–63.

CAS  PubMed  Article  Google Scholar 

Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet. 2002;3:415–28.

CAS  PubMed  Article  Google Scholar 

Lomberk G, Blum Y, Nicolle R, et al. Distinct epigenetic landscapes underlie the pathobiology of pancreatic cancer subtypes. Nat Commun. 2018;9:1978.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science. 2018;359:1350–5.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Le DT, Durham JN, Smith KN, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 2017;357:409–13.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Yarchoan M, Hopkins A, Jaffee EM. Tumor Mutational Burden and Response Rate to PD-1 Inhibition. N Engl J Med. 2017;377:2500–1.

PubMed  PubMed Central  Article  Google Scholar 

Hu ZI, Shia J, Stadler ZK, et al. Evaluating Mismatch Repair Deficiency in Pancreatic Adenocarcinoma: Challenges and Recommendations. Clin Cancer Res. 2018;24:1326–36.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Chakravarthy A, Khan L, Bensler NP, et al. TGF-beta-associated extracellular matrix genes link cancer-associated fibroblasts to immune evasion and immunotherapy failure. Nat Commun. 2018;9:4692.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Ford K, Hanley CJ, Mellone M, et al. NOX4 Inhibition potentiates immunotherapy by overcoming cancer-associated fibroblast-mediated cd8 t-cell exclusion from tumors. Cancer Res. 2020;80:1846–60.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Kieffer Y, Hocine HR, Gentric G, et al. single-cell analysis reveals fibroblast clusters linked to immunotherapy resistance in cancer. Cancer Discov. 2020;10:1330–51.

CAS  PubMed  Article  Google Scholar 

Topper MJ, Vaz M, Marrone KA, et al. The emerging role of epigenetic therapeutics in immuno-oncology. Nat Rev Clin Oncol. 2020;17:75–90.

PubMed  Article  Google Scholar 

Baylin SB, Jones PA. Epigenetic determinants of cancer. Cold Spring Harb Perspect Biol. 2016;8: a019505.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Okano M, Bell DW, Haber DA, et al. DNA methyltransferases dnmt3a and dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999;99:247–57.

CAS  PubMed  Article  Google Scholar 

Robert MF, Morin S, Beaulieu N, et al. DNMT1 is required to maintain CpG methylation and aberrant gene silencing in human cancer cells. Nat Genet. 2003;33:61–5.

CAS  PubMed  Article  Google Scholar 

Hou HA, Kuo YY, Liu CY, et al. DNMT3A mutations in acute myeloid leukemia: stability during disease evolution and clinical implications. Blood. 2012;119:559–68.

CAS  PubMed  Article  Google Scholar 

Russler-Germain DA, Spencer DH, Young MA, et al. The R882H DNMT3A mutation associated with Aml dominantly inhibits wild-type Dnmt3a by blocking its ability to form active tetramers. Cancer Cell. 2014;25:442–54.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Robertson KD, Uzvolgyi E, Liang G, et al. The human DNA methyltransferases (DNMTs) 1, 3a and 3b: coordinate mRNA expression in normal tissues and overexpression in tumors. Nucleic Acids Res. 1999;27:2291–8.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Li A, Omura N, Hong SM, et al. Pancreatic cancer DNMT1 expression and sensitivity to DNMT1 inhibitors. Cancer Biol Ther. 2010;9:321–9.

CAS  PubMed  Article  Google Scholar 

Sato N, Maitra A, Fukushima N, et al. Frequent hypomethylation of multiple genes overexpressed in pancreatic ductal adenocarcinoma. Cancer Res. 2003;63:4158–66.

CAS  PubMed  Google Scholar 

Rhee I, Bachman KE, Park BH, et al. DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature. 2002;416:552–6.

CAS  PubMed  Article  Google Scholar 

Da Costa EM, McInnes G, Beaudry A, et al. DNA Methylation-Targeted Drugs Cancer J. 2017;23:270–6.

PubMed  Google Scholar 

Thakar M, Hu Y, Morreale M, et al. A novel epigenetic modulating agent sensitizes pancreatic cells to a chemotherapy agent. PLoS ONE. 2018;13: e0199130.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Von Hoff DD, Rasco DW, Heath EI, et al. Phase I study of CC-486 Alone and in Combination with Carboplatin or nab-Paclitaxel in Patients with Relapsed or Refractory Solid Tumors. Clin Cancer Res. 2018;24:4072–80.

Article  Google Scholar 

Tahiliani M, Koh KP, Shen Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324:930–5.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Fujikura K, Alruwaii ZI, Haffner MC, et al. Downregulation of 5-hydroxymethylcytosine is an early event in pancreatic tumorigenesis. J Pathol. 2021;254:279–88.

CAS  PubMed  Article  Google Scholar 

Wu J, Li H, Shi M, et al. TET1-mediated DNA hydroxymethylation activates inhibitors of the Wnt/beta-catenin signaling pathway to suppress EMT in pancreatic tumor cells. J Exp Clin Cancer Res. 2019;38:348.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Xu W, Yang H, Liu Y, et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell. 2011;19:17–30.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Borger DR, Tanabe KK, Fan KC, et al. Frequent mutation of isocitrate dehydrogenase (IDH)1 and IDH2 in cholangiocarcinoma identified through broad-based tumor genotyping. Oncologist. 2012;17:72–9.

CAS  PubMed  Article  Google Scholar 

Nunez FJ, Mendez FM, Kadiyala P, et al. IDH1-R132H acts as a tumor suppressor in glioma via epigenetic up-regulation of the DNA damage response. Sci Transl Med. 2019. https://doi.org/10.1126/scitranslmed.aaq1427.

Article  PubMed  PubMed Central  Google Scholar 

Turcan S, Rohle D, Goenka A, et al. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature. 2012;483:479–83.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Kadiyala P, Carney SV, Gauss JC, et al. Inhibition of 2-hydroxyglutarate elicits metabolic reprogramming and mutant IDH1 glioma immunity in mice. J Clin Invest. 2021;131:e139542. https://doi.org/10.1172/JCI139542.

CAS  Article  PubMed Central  Google Scholar 

Roulois D, Loo Yau H, Singhania R, et al. DNA-Demethylating Agents Target Colorectal Cancer Cells by Inducing Viral Mimicry by Endogenous Transcripts. Cell. 2015;162:961–73.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Chiappinelli KB, Stri

留言 (0)

沒有登入
gif