Involvement of host microRNAs in flavivirus-induced neuropathology: An update

Acuña SM, Floeter-Winter LM and Muxel SM 2020 microRNAs: biological regulators in pathogen host interactions. Cells 9 113

PubMed Central  Article  CAS  Google Scholar 

Álvarez-Díaz DA, Gutiérrez-Díaz AA, Orozco-García E, et al. 2019 Dengue virus potentially promotes migratory responses on endothelial cells by enhancing pro-migratory soluble factors and miRNAs. Virus Res. 259 68–76

PubMed  Article  CAS  Google Scholar 

Arboleda JF, Fernandez GJ and Urcuqui-Inchima S 2019 Vitamin D-mediated attenuation of miR-155 in human macrophages infected with dengue virus: Implications for the cytokine response. Infect. Genet. Evol. 69 12–21

CAS  PubMed  Article  Google Scholar 

Ashraf U, Zhu B, Ye J, et al. 2016 microRNA-19b-3p modulates Japanese encephalitis virus-mediated inflammation via targeting RNF11. J. Virol. 90 4780–4795

CAS  PubMed  PubMed Central  Article  Google Scholar 

Azouz F, Arora K, Krause K, Nerurkar VR and Kumar M 2019 Integrated microRNA and mRNA profiling in Zika virus-infected neurons. Viruses 11 162

CAS  PubMed Central  Article  Google Scholar 

Bagasra O, Shamabadi NS, Pandey P, Desoky A and McLean E 2021 Differential expression of miRNAs in a human developing neuronal cell line chronically infected with zika virus. Libyan J. Med. 16 1909902

PubMed  PubMed Central  Article  Google Scholar 

Baluni M, Ghildiyal S, Singh D, et al. 2018 Increased serum microRNA-29b expression and bad recovery in Japanese encephalitis virus infected patients; A new component to improve the disease recovery. J. Neuroimmunol. 323 56–61

CAS  PubMed  Article  Google Scholar 

Banerjee A and Tripathi A 2019 Recent advances in understanding Japanese encephalitis. F1000Research 8 F1000 Faculty Rev-1915

Barrett ADT 2017 Yellow fever live attenuated vaccine: A very successful live attenuated vaccine but still we have problems controlling the disease. Vaccine 35 5951–5955

PubMed  Article  Google Scholar 

Bartel DP 2004 MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116 281–297

CAS  PubMed  Article  Google Scholar 

Bhagat R, Prajapati B, Narwal S, et al. 2018 Zika virus E protein alters the properties of human fetal neural stem cells by modulating microRNA circuitry. Cell Death Differ. 25 1837–1854

CAS  PubMed  PubMed Central  Article  Google Scholar 

Bhaskaran M and Mohan M 2014 MicroRNAs: history, biogenesis, and their evolving role in animal development and disease. Vet. Pathol. 51 759–774

CAS  PubMed  Article  Google Scholar 

Brennan GP and Henshall DC 2018 microRNAs in the pathophysiology of epilepsy. Neurosci. Lett. 667 47–52

CAS  PubMed  Article  Google Scholar 

Calderón-Peláez M-A, Velandia-Romero ML, et al. 2019 Dengue virus infection of blood-brain barrier cells: Consequences of severe disease. Front. Microbiol. 10 1435

PubMed  PubMed Central  Article  Google Scholar 

Calvet GA, dos Santos FB and Sequeira PC 2016 Zika virus infection: epidemiology, clinical manifestations and diagnosis. Curr. Opin. Infect. Dis. 29 459–466

PubMed  Article  Google Scholar 

Casseb SMM, Simith DB, Melo KFL et al. 2016 Drosha, DGCR8, and Dicer mRNAs are down-regulated in human cells infected with dengue virus 4, and play a role in viral pathogenesis. Genet. Mol. Res. 15 gmr7891

Castillo JA, Castrillón JC, Diosa-Toro M, et al. 2016 Complex interaction between dengue virus replication and expression of miRNA-133a. BMC Infect. Dis. 16 29

PubMed  PubMed Central  Article  CAS  Google Scholar 

Castrillón-Betancur JC and Urcuqui-Inchima S 2017 Overexpression of miR-484 and miR-744 in Vero cells alters Dengue virus replication. Mem. Inst. Oswaldo Cruz 112 281–291

PubMed  PubMed Central  Article  CAS  Google Scholar 

Castro FL, Geddes VEV, Monteiro FLL, et al. 2019 microRNAs 145 and 148a Are upregulated during congenital Zika virus infection. ASN Neuro 11 1759091419850983

CAS  PubMed  PubMed Central  Article  Google Scholar 

CDC 2019 Geographic distribution of Japanese encephalitis virus https://www.cdc.gov/japaneseencephalitis/maps/index.html

Chen CC, Liu L, Ma F, et al. 2016a Elucidation of exosome migration across the blood-brain barrier model in vitro. Cell. Mol. Bioeng. 9 509–529

CAS  PubMed  Article  Google Scholar 

Chen Z, Ye J, Ashraf U, et al. 2016b microRNA-33a-5p modulates Japanese encephalitis virus replication by targeting eukaryotic translation elongation factor 1A1. J. Virol. 90 3722–3734

CAS  PubMed  PubMed Central  Article  Google Scholar 

Chugh PE, Damania BA and Dittmer DP 2014 Toll-like receptor-3 is dispensable for the innate microRNA response to West Nile virus (WNV). PLoS One 9 e104770

Dang JW, Tiwari SK, Qin Y and Rana TM 2019 Genome-wide integrative analysis of Zika-virus-infected neuronal stem cells reveals roles for microRNAs in cell cycle and stemness. Cell Rep. 27 3618-3628.e5

CAS  PubMed  PubMed Central  Article  Google Scholar 

Deng M, Du G, Zhao J and Du X 2017 miR-146a negatively regulates the induction of proinflammatory cytokines in response to Japanese encephalitis virus infection in microglial cells. Arch. Virol. 162 1495–1505

CAS  PubMed  Article  Google Scholar 

Desvignes T, Batzel P, Berezikov E, et al. 2015 microRNA nomenclature: A view incorporating genetic origins, biosynthetic pathways, and sequence variants. Trends Genet.  31 613–626

CAS  PubMed  Article  Google Scholar 

Dickey LL, Hanley TM, Huffaker TB, et al. 2017 microRNA 155 and viral-induced neuroinflammation. J. Neuroimmunol. 308 17–24

CAS  PubMed  PubMed Central  Article  Google Scholar 

Diosa-Toro M, Echavarría-Consuegra L, Flipse J, et al. 2017 MicroRNA profiling of human primary macrophages exposed to dengue virus identifies miRNA-3614-5p as antiviral and regulator of ADAR1 expression. PLoS Negl. Trop. Dis. 11 e0005981

PubMed  PubMed Central  Article  CAS  Google Scholar 

Dogrammatzis C, Waisner H and Kalamvoki M 2020 Cloaked viruses and viral factors in cutting edge exosome-based therapies. Front. Cell Dev. Biol. 8 376

PubMed  PubMed Central  Article  Google Scholar 

Elduma AH, LaBeaud AD and A. Plante J, Plante KS, Ahmed A, 2020 high seroprevalence of dengue virus infection in Sudan: systematic review and meta-analysis. Trop. Med. Infect. Dis. 5 120

PubMed Central  Article  Google Scholar 

Escalera-Cueto M, Medina-Martínez I, del Angel RM, et al. 2015 Let-7c overexpression inhibits dengue virus replication in human hepatoma Huh-7 cells. Virus Res. 196 105–112

CAS  PubMed  Article  Google Scholar 

Ferreira RN, Holanda GM, Pinto Silva EV, et al. 2018 Zika virus alters the expression profile of microRNA-related genes in liver, lung, and kidney cell lineages. Viral Immunol. 31 583–588

CAS  PubMed  Article  Google Scholar 

Filgueira L and Lannes N 2019 Review of emerging Japanese encephalitis virus: new aspects and concepts about entry into the brain and inter-cellular spreading. Pathogens 8 111

CAS  PubMed Central  Article  Google Scholar 

Fredericksen BL 2014 The neuroimmune response to West Nile virus. J. Neurovirol. 20 113–121

CAS  PubMed  Article  Google Scholar 

Galli R, Paone A, Fabbri M, et al. 2013 Toll-like receptor 3 (TLR3) activation induces microRNA-dependent reexpression of functional RARβ and tumor regression. Proc. Natl. Acad. Sci. USA. 110 9812–9817

CAS  PubMed  PubMed Central  Article  Google Scholar 

Goswami S, Banerjee A, Kumari B, et al. 2017 Differential expression and significance of circulating microRNAs in cerebrospinal fluid of acute encephalitis patients infected with Japanese encephalitis virus. Mol. Neurobiol. 54 1541–1551

CAS  PubMed  Article  Google Scholar 

Greene J, Baird A-M, Brady L, et al. 2017 Circular RNAs: biogenesis, function and role in human diseases. Front. Mol. Biosci. 4 38

PubMed  PubMed Central  Article  CAS  Google Scholar 

Gyure KA 2009 West Nile virus infections. J. Neuropathol. Exp. Neurol. 68 1053–1060

PubMed  Article  Google Scholar 

Habarugira G, Suen WW, Hobson-Peters J, Hall RA and Bielefeldt-Ohmann H 2020 West Nile virus: an update on pathobiology, epidemiology, diagnostics, control and “one health” implications. Pathogens 9 589

CAS  PubMed Central  Article  Google Scholar 

Halstead SB 2017 Dengvaxia sensitizes seronegatives to vaccine enhanced disease regardless of age. Vaccine 35 6355–6358

CAS  PubMed  Article  Google Scholar 

Hapugaswatta H, Amarasena P, Premaratna R, Seneviratne KN and Jayathilaka N 2020 Differential expression of microRNA, miR-150 and enhancer of zeste homolog 2 (EZH2) in peripheral blood cells as early prognostic markers of severe forms of dengue. J. Biomed. Sci. 27 25

CAS  PubMed  PubMed Central  Article  Google Scholar 

留言 (0)

沒有登入
gif