The Role of Glia in Addiction: Dopamine as a Modulator of Glial Responses in Addiction

Aghaie CI, Hausknecht KA, Wang R, Dezfuli PH, Haj-Dahmane S, Kane CJ, Shen RY (2020) Prenatal ethanol exposure and postnatal environmental intervention alter dopaminergic neuron and microglia morphology in the ventral tegmental area during adulthood. Alcohol Clin Exp Res 44(2):435–444

CAS  PubMed  PubMed Central  Google Scholar 

Alonso R, Chaudieu I, Diorio J, Krishnamurthy A, Quirion R, Boksa P (1993) Interleukin-2 modulates evoked release of [3H] dopamine in rat cultured mesencephalic cells. J Neurochem 61(4):1284–1290

CAS  PubMed  Google Scholar 

Armstrong V, Reichel CM, Doti JF, Crawford CA, McDougall SA (2004) Repeated amphetamine treatment causes a persistent elevation of glial fibrillary acidic protein in the caudate–putamen. Eur J Pharmacol 488(1–3):111–115

CAS  PubMed  Google Scholar 

Aurelian L, Warnock K, Balan I, Puche A, June H (2016) TLR4 signaling in VTA dopaminergic neurons regulates impulsivity through tyrosine hydroxylase modulation. Transl Psychiatry 6(5):815

Google Scholar 

Banisadr G, Queraud-Lesaux F, Boutterin M, Pelaprat D, Zalc B, Rostene W, Melik Parsadaniantz S (2002) Distribution, cellular localization and functional role of CCR2 chemokine receptors in adult rat brain. J Neurochem 81(2):257–269

CAS  PubMed  Google Scholar 

Barron AB, Søvik E, Cornish JL (2010) The roles of dopamine and related compounds in reward-seeking behavior across animal phyla. Front Behav Neurosci 4:163

PubMed  PubMed Central  Google Scholar 

Basu S, Dasgupta PS (2000) Dopamine, a neurotransmitter, influences the immune system. J Neuroimmunol 102(2):113–124

CAS  PubMed  Google Scholar 

Beaulieu JM, Gainetdinov RR (2011) The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 63(1):182–217

CAS  PubMed  Google Scholar 

Beaulieu JM, Espinoza S, Gainetdinov RR (2015) Dopamine receptors–IUPHAR review 13. Br J Pharmacol 172(1):1–23

CAS  PubMed  Google Scholar 

Beeler JA, Daw ND, Frazier CR, Zhuang X (2010) Tonic dopamine modulates exploitation of reward learning. Front Behav Neurosci 4:170

PubMed  PubMed Central  Google Scholar 

Berridge KC, Kringelbach ML (2015) Pleasure systems in the brain. Neuron 86(3):646–664

CAS  PubMed  PubMed Central  Google Scholar 

Bland ST, Hutchinson MR, Maier SF, Watkins LR, Johnson KW (2009) The glial activation inhibitor AV411 reduces morphine-induced nucleus accumbens dopamine release. Brain Behav Immun 23(4):492–497

CAS  PubMed  PubMed Central  Google Scholar 

Bloomfield MA, Ashok AH, Volkow ND, Howes OD (2016) The effects of Δ9-tetrahydrocannabinol on the dopamine system. Nature 539(7629):369–377

CAS  PubMed  PubMed Central  Google Scholar 

Boileau I, Assaad JM, Pihl RO, Benkelfat C, Leyton M, Diksic M, Tremblay RE, Dagher A (2003) Alcohol promotes dopamine release in the human nucleus accumbens. Synapse 49(4):226–231

CAS  PubMed  Google Scholar 

Boyson SJ, McGonigle P, Molinoff PB (1986) Quantitative autoradiographic localization of the D1 and D2 subtypes of dopamine receptors in rat brain. J Neurosci 6(11):3177–3188

CAS  PubMed  PubMed Central  Google Scholar 

Bressan RA, Crippa JA (2005) The role of dopamine in reward and pleasure behaviour–review of data from preclinical research. Acta Psychiatr Scand 111:14–21

Google Scholar 

Bruinsma K, Taren DL (1999) Chocolate: food or drug? J Am Diet Assoc 99(10):1249–1256

CAS  PubMed  Google Scholar 

Chen J-X, Huang K-M, Liu M, Jiang J-X, Liu J-P, Zhang Y-X, Zhang X-Q (2017) Activation of TLR4/STAT3 signaling in VTA contributes to the acquisition and maintenance of morphine-induced conditioned place preference. Behav Brain Res 335:151–157

CAS  PubMed  Google Scholar 

Coller JK, Hutchinson MR (2012) Implications of central immune signaling caused by drugs of abuse: mechanisms, mediators and new therapeutic approaches for prediction and treatment of drug dependence. Pharmacol Ther 134(2):219–245

CAS  PubMed  Google Scholar 

Cooper S, Robison A, Mazei-Robison MS (2017) Reward circuitry in addiction. Neurotherapeutics 14(3):687–697

CAS  PubMed  PubMed Central  Google Scholar 

Cosentino M, Rasini E, Colombo C, Marino F, Blandini F, Ferrari M, Frigo G (2004) Dopaminergic modulation of oxidative stress and apoptosis in human peripheral blood lymphocytes: evidence for a D1-like receptor-dependent protective effect. Free Radical Biol Med 36(10):1233–1240

CAS  Google Scholar 

Dalçik H, Yardimoglu M (2009) Chronic ethanol-induced glial fibrillary acidic protein (GFAP) immunoreactivity: an immunocytochemical observation in various regions of adult rat brain. Int J Neurosci 119(9):1303–1318

PubMed  Google Scholar 

Daubner SC, Le T, Wang S (2011) Tyrosine hydroxylase and regulation of dopamine synthesis. Arch Biochem Biophys 508(1):1–12

CAS  PubMed  Google Scholar 

Degenhardt L, Charlson F, Mathers B, Hall WD, Flaxman AD, Johns N, Vos T (2014) The global epidemiology and burden of opioid dependence: results from the global burden of disease 2010 study. Addiction 109(8):1320–1333

PubMed  Google Scholar 

Degraaf AJ, Zasłona Z, Bourdonnay E, Peters-Golden M (2014) Prostaglandin E2 reduces Toll-like receptor 4 expression in alveolar macrophages by inhibition of translation. Am J Respir Cell Mol Biol 51(2):242–250

PubMed  PubMed Central  Google Scholar 

di Volo M, Morozova EO, Lapish CC, Kuznetsov A, Gutkin B (2019) Dynamical ventral tegmental area circuit mechanisms of alcohol-dependent dopamine release. Eur J Neurosci 50(3):2282–2296

PubMed  Google Scholar 

Ding S, Wang W, Wang X, Liang Y, Liu L, Ye Y, Zhuge Q (2016) Dopamine burden triggers neurodegeneration via production and release of TNF-α from astrocytes in minimal hepatic encephalopathy. Mol Neurobiol 53(8):5324–5343

CAS  PubMed  Google Scholar 

Dominguez-Meijide A, Rodriguez-Perez AI, Diaz-Ruiz C, Guerra MJ, Labandeira-Garcia JL (2017) Dopamine modulates astroglial and microglial activity via glial renin-angiotensin system in cultures. Brain Behav Immun 62:277–290

CAS  PubMed  Google Scholar 

Fan Y, Chen Z, Pathak JL, Carneiro A, Chung CY (2018) Differential regulation of adhesion and phagocytosis of resting and activated microglia by dopamine. Front Cell Neurosci 12:309

PubMed  PubMed Central  Google Scholar 

Felger JC, Miller AH (2012) Cytokine effects on the basal ganglia and dopamine function: the subcortical source of inflammatory malaise. Front Neuroendocrinol 33(3):315–327

CAS  PubMed  PubMed Central  Google Scholar 

Ferré S, Fredholm BB, Morelli M, Popoli P, Fuxe K (1997) Adenosine-dopamine receptor-receptor interactions as an integrative mechanism in the basal ganglia. Trends Neurosci 20(10):482–487

PubMed  Google Scholar 

Fields RD, Stevens-Graham B (2002) New insights into neuron-glia communication. Science 298(5593):556–562

CAS  PubMed  PubMed Central  Google Scholar 

Fleckenstein AE, Volz TJ, Riddle EL, Gibb JW, Hanson GR (2007) New insights into the mechanism of action of amphetamines. Annu Rev Pharmacol Toxicol 47:681–698

CAS  PubMed  Google Scholar 

Franco R, Reyes-Resina I, Navarro G (2021) Dopamine in health and disease much more than a neurotransmitter. Biomedicines. https://doi.org/10.3390/biomedicines9020109

Article  PubMed  PubMed Central  Google Scholar 

Färber K, Pannasch U, Kettenmann H (2005) Dopamine and noradrenaline control distinct functions in rodent microglial cells. Mol Cell Neurosci 29(1):128–138

PubMed  Google Scholar 

Gessa GL, Casu MA, Carta G, Mascia MS (1998) Cannabinoids decrease acetylcholine release in the medial-prefrontal cortex and hippocampus, reversal by SR 141716A. Eur J Pharmacol 355(2–3):119–124

CAS  PubMed  Google Scholar 

Goldstein RZ, Volkow ND (2011) Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nat Rev Neurosci 12(11):652

CAS  PubMed  PubMed Central  Google Scholar 

Grace AA (2000) The tonic/phasic model of dopamine system regulation and its implications for understanding alcohol and psychostimulant craving. Addiction 95(82):119–128

Google Scholar 

Granado N, Ares-Santos S, Oliva I, Martin ED, Colado MI, Moratalla R (2011) Dopamine D2-receptor knockout mice are protected against dopaminergic neurotoxicity induced by methamphetamine or MDMA. Neurobiol Dis 42(3):391–403

CAS  PubMed  Google Scholar 

Guillot T, Richardson J, Wang M, Li Y, Taylor T, Ciliax B, Miller G (2008) PACAP38 increases vesicular monoamine transporter 2 (VMAT2) expression and attenuates methamphetamine toxicity. Neuropeptides 42(4):423–434

CAS  PubMed  PubMed Central  Google Scholar 

Guyon A, Skrzydelski D, De Giry I, Rovere C, Conductier G, Trocello JM, Nahon J-L (2009) Long term exposure to the chemokine CCL2 activates the nigrostriatal dopamine system: a novel mechanism for the control of dopamine release. Neuroscience 162(4):1072–1080

CAS  PubMed  Google Scholar 

Hamid AA, Pettibone JR, Mabrouk OS, Hetrick VL, Schmidt R, Vander Weele CM, Berke JD (2016) Mesolimbic dopamine signals the value of work. Nat Neurosci 19(1):117

CAS  PubMed  Google Scholar 

Hamilton NB, Attwell D (2010) Do astrocytes really exocytose neurotransmitters? Nat Rev Neurosci 11(4):227

CAS  PubMed  Google Scholar 

Hawkins J, Denson J, Miley D, Durham P (2015) Nicotine stimulates expression of proteins implicated in peripheral and central sensitization. Neuroscience 290:115–125

CAS  PubMed 

留言 (0)

沒有登入
gif