Structure Composition and Intracellular Transport of Clathrin-Mediated Intestinal Transmembrane Tight Junction Protein

Oshima, T., and H. Miwa. 2016. Gastrointestinal mucosal barrier function and diseases. Journal of Gastroenterology 51: 768–778.

CAS  PubMed  Article  Google Scholar 

Günzel, D., and M. Fromm. 2012. Claudins and other tight junction proteins. Comprehensive Physiology 2: 1819–1852.

PubMed  Article  Google Scholar 

Gunzel, D., and A.S. Yu. 2013. Claudins and the modulation of tight junction permeability. Physiological Reviews 93: 525–569.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Tsukita, S., H. Tanaka, and A. Tamura. 2019. The Claudins: from tight junctions to biological systems. Trends in Biochemical Sciences 44: 141–152.

CAS  PubMed  Article  Google Scholar 

Hering, N.A., M. Fromm, and J.D. Schulzke. 2012. Determinants of colonic barrier function in inflammatory bowel disease and potential therapeutics. The Journal of Physiology 590: 1035–1044.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Capaldo, C.T., and A. Nusrat. 2015. Claudin switching: physiological plasticity of the tight junction. Seminars in Cell & Developmental Biology 42: 22–29.

CAS  Article  Google Scholar 

Garcia-Hernandez, V., M. Quiros, and A. Nusrat. 2017. Intestinal epithelial claudins: expression and regulation in homeostasis and inflammation: intestinal epithelial claudins. Annals of the New York Academy of Sciences 1397: 66–79.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Mineta, K., Y. Yamamoto, Y. Yamazaki, et al. 2011. Predicted expansion of the claudin multigene family. FEBS Letters 585: 606–612.

CAS  PubMed  Article  Google Scholar 

Fromm, M., J. Piontek, R. Rosenthal, et al. 2017. Tight junctions of the proximal tubule and their channel proteins. Pflugers Archiv: European Journal of Physiology 469: 877–887.

CAS  PubMed  Article  Google Scholar 

Wittchen, E.S., J. Haskins, and B.R. Stevenson. 1999. Protein interactions at the tight junction. Journal of Biological Chemistry 274: 35179–35185.

CAS  PubMed  Article  Google Scholar 

Krug, S.M., S. Amasheh, J.F. Richter, et al. 2009. Tricellulin forms a barrier to macromolecules in tricellular tight junctions without affecting ion permeability. Molecular Biology of the Cell 20: 3713–3724.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Al-Sadi, R., K. Khatib, S. Guo, et al. 2011. Occludin regulates macromolecule flux across the intestinal epithelial tight junction barrier. American Journal of Physiology-Gastrointestinal and Liver Physiology 300: G1054-1064.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Raleigh, D.R., A.M. Marchiando, Y. Zhang, et al. 2010. Tight junction-associated MARVEL proteins marveld3, tricellulin, and occludin have distinct but overlapping functions. Molecular Biology of the Cell 21: 1200–1213.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Steed, E., A. Elbediwy, B. Vacca, et al. 2014. MarvelD3 couples tight junctions to the MEKK1-JNK pathway to regulate cell behavior and survival. Journal of Cell Biology 204: 821–838.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Heinemann, U., and A. Schuetz. 2019. Structural features of tight-junction proteins. International Journal of Molecular Sciences 20: 6020.

CAS  PubMed Central  Article  Google Scholar 

Bazzoni, G., O.M. Martinez-Estrada, F. Orsenigo, et al. 2000. Interaction of junctional adhesion molecule with the tight junction components ZO-1, cingulin, and occludin. Journal of Biological Chemistry 275: 20520–20526.

CAS  PubMed  Article  Google Scholar 

Otani, T., T.P. Nguyen, S. Tokuda, et al. 2019. Claudins and JAM-A coordinately regulate tight junction formation and epithelial polarity. Journal of Cell Biology 218: 3372–3396.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Monteiro, A.C., R. Sumagin, C.R. Rankin, et al. 2013. JAM-A associates with ZO-2, afadin, and PDZ-GEF1 to activate Rap2c and regulate epithelial barrier function. Molecular Biology of the Cell 24: 2849–2860.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Umeda, K., J. Ikenouchi, S. Katahira-Tayama, et al. 2006. ZO-1 and ZO-2 independently determine where claudins are polymerized in tight-junction strand formation. Cell 126: 741–754.

CAS  PubMed  Article  Google Scholar 

Hamazaki, Y., M. Itoh, H. Sasaki, et al. 2002. Multi-PDZ domain protein 1 (MUPP1) is concentrated at tight junctions through its possible interaction with claudin-1 and junctional adhesion molecule. Journal of Biological Chemistry 277: 455–461.

CAS  PubMed  Article  Google Scholar 

Chen, Y., D.C. Gershlick, S.Y. Park, et al. 2017. Segregation in the Golgi complex precedes export of endolysosomal proteins in distinct transport carriers. Journal of Cell Biology 216: 4141–4151.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Keller, P., D. Toomre, E. Díaz, et al. 2001. Multicolour imaging of post-Golgi sorting and trafficking in live cells. Nature cell biology 3: 140–149.

CAS  PubMed  Article  Google Scholar 

Stalder, D., and D.C. Gershlick. 2020. Direct trafficking pathways from the Golgi apparatus to the plasma membrane. Seminars in Cell & Developmental Biology 107: 112–125.

CAS  Article  Google Scholar 

Mettlen, M., P.H. Chen, S. Srinivasan, et al. 2018. Regulation of clathrin-mediated endocytosis. Annual Review of Biochemistry 87: 871–896.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Robinson, M.S. 2015. Forty years of clathrin-coated vesicles: Forty years of clathrin-coated vesicles. Traffic 16: 1210–1238.

CAS  PubMed  Article  Google Scholar 

Aguilar-Aragon, M., G. Fletcher, and B.J. Thompson. 2020. The cytoskeletal motor proteins dynein and MyoV direct apical transport of crumbs. Developmental Biology 459: 126–137.

CAS  PubMed  Article  Google Scholar 

London, E. 2019. Membrane structure-function insights from asymmetric lipid vesicles. Accounts of Chemical Research 52: 2382–2391.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Makowski, S.L., R.S. Kuna, and S.J. Field. 2020. Induction of membrane curvature by proteins involved in Golgi trafficking. Advances in Biological Regulation 75: 100661.

CAS  PubMed  Article  Google Scholar 

Kaksonen, M., and A. Roux. 2018. Mechanisms of clathrin-mediated endocytosis. Nature Reviews Molecular Cell Biology 19: 313–326.

CAS  PubMed  Article  Google Scholar 

Beacham, G.M., E.A. Partlow, and G. Hollopeter. 2019. Conformational regulation of AP1 and AP2 clathrin adaptor complexes. Traffic 20: 741–751.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Gravotta, D., J.M. Carvajal-Gonzalez, R. Mattera, et al. 2012. The clathrin adaptor AP-1A mediates basolateral polarity. Developmental Cell 22: 811–823.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Kural, C., S.K. Tacheva-Grigorova, S. Boulant, et al. 2012. Dynamics of intracellular clathrin/AP1- and clathrin/AP3-containing carriers. Cell Reports 2: 1111–1119.

CAS  PubMed  Article  Google Scholar 

Traub, L.M. 2005. Common principles in clathrin-mediated sorting at the Golgi and the plasma membrane. Biochimica et Biophysica Acta 1744: 415–437.

CAS  PubMed  Article  Google Scholar 

Park, S.Y., and X. Guo. 2014. Adaptor protein complexes and intracellular transport. Bioscience Reports 34: e00123.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Guna, A., and R.S. Hegde. 2018. Transmembrane domain recognition during membrane protein biogenesis and quality control. Current Biology 28: R498–R511.

CAS  PubMed  Article  Google Scholar 

Glotfelty, L.G., A. Zahs, C. Iancu, et al. 2014. Microtubules are required for efficient epithelial tight junction homeostasis and restoration. American Journal of Physiology-Cell Physiology 307: C245-254.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Carter, A.P., A.G. Diamant, and L. Urnavicius. 2016. How dynein and dynactin transport cargos: a structural perspective. Current Opinion in Structural Biology 37: 62–70.

CAS  PubMed  Article  Google Scholar 

Vaughan, K.T. 2005. Microtubule plus ends, motors, and traffic of Golgi membranes. Biochimica et Biophysica Acta 1744: 316–324.

留言 (0)

沒有登入
gif