The Role of Macrophages and Alveolar Epithelial Cells in the Development of ARDS

Force, A.D.T., V.M. Ranieri, G.D. Rubenfeld, B.T. Thompson, N.D. Ferguson, E. Caldwell, E. Fan, L. Camporota, and A.S. Slutsky. 2012. Acute respiratory distress syndrome: The Berlin Definition. JAMA 307: 2526–2533.

Google Scholar 

Fan, E., D. Brodie, and A.S. Slutsky. 2018. Acute Respiratory Distress Syndrome: Advances in Diagnosis and Treatment. JAMA 319: 698–710.

PubMed  Article  Google Scholar 

Herold, S., K. Mayer, and J. Lohmeyer. 2011. Acute lung injury: How macrophages orchestrate resolution of inflammation and tissue repair. Frontiers in Immunology 2: 65.

PubMed  PubMed Central  Article  Google Scholar 

Duan, M., W.C. Li, R. Vlahos, M.J. Maxwell, G.P. Anderson, and M.L. Hibbs. 2012. Distinct macrophage subpopulations characterize acute infection and chronic inflammatory lung disease. The Journal of Immunology 189: 946–955.

CAS  PubMed  Article  Google Scholar 

Aggarwal, N.R., L.S. King, and F.R. D’Alessio. 2014. Diverse macrophage populations mediate acute lung inflammation and resolution. American Journal of Physiology. Lung Cellular and Molecular Physiology 306: L709-725.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Woo, Y.D., D. Jeong, and D.H. Chung. 2021. Development and Functions of Alveolar Macrophages. Molecules and Cells 44: 292–300.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Guilliams, M., I. De Kleer, S. Henri, S. Post, L. Vanhoutte, S. De Prijck, K. Deswarte, B. Malissen, H. Hammad, and B.N. Lambrecht. 2013. Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF. Journal of Experimental Medicine 210: 1977–1992.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Schneider, C., S.P. Nobs, A.K. Heer, M. Kurrer, G. Klinke, N. van Rooijen, J. Vogel, and M. Kopf. 2014. Alveolar macrophages are essential for protection from respiratory failure and associated morbidity following influenza virus infection. PLoS Pathogens 10: e1004053.

PubMed  PubMed Central  Article  Google Scholar 

Westphalen, K., G.A. Gusarova, M.N. Islam, M. Subramanian, T.S. Cohen, A.S. Prince, and J. Bhattacharya. 2014. Sessile alveolar macrophages communicate with alveolar epithelium to modulate immunity. Nature 506: 503–506.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Neupane, A.S., M. Willson, A.K. Chojnacki, E.S.C.F. Vargas, C. Morehouse, A. Carestia, A.E. Keller, M. Peiseler, A. DiGiandomenico, M.M. Kelly, et al. 2020. Patrolling Alveolar Macrophages Conceal Bacteria from the Immune System to Maintain Homeostasis. Cell 183 (110–125): e111.

Google Scholar 

Li, D., and M. Wu. 2021. Pattern recognition receptors in health and diseases. Signal Transduction and Targeted Therapy 6: 291.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Chen, X., J. Tang, W. Shuai, J. Meng, J. Feng, and Z. Han. 2020. Macrophage polarization and its role in the pathogenesis of acute lung injury/acute respiratory distress syndrome. Inflammation Research 69: 883–895.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Galli, G., and M. Saleh. 2020. Immunometabolism of Macrophages in Bacterial Infections. Frontiers in Cellular and Infection Microbiology 10: 607650.

CAS  PubMed  Article  Google Scholar 

Kim, S., K.B. Elkon, and X. Ma. 2004. Transcriptional suppression of interleukin-12 gene expression following phagocytosis of apoptotic cells. Immunity 21: 643–653.

CAS  PubMed  Article  Google Scholar 

Byrne, A., and D.J. Reen. 2002. Lipopolysaccharide induces rapid production of IL-10 by monocytes in the presence of apoptotic neutrophils. The Journal of Immunology 168: 1968–1977.

CAS  PubMed  Article  Google Scholar 

Huang, X., H. Xiu, S. Zhang, and G. Zhang. 2018. The Role of Macrophages in the Pathogenesis of ALI/ARDS. Mediators of Inflammation 2018: 1264913.

PubMed  PubMed Central  Google Scholar 

Thompson, B.T., R.C. Chambers, and K.D. Liu. 2017. Acute Respiratory Distress Syndrome. New England Journal of Medicine 377: 562–572.

CAS  PubMed  Article  Google Scholar 

Duru, N., B. Wolfson, and Q. Zhou. 2016. Mechanisms of the alternative activation of macrophages and non-coding RNAs in the development of radiation-induced lung fibrosis. World Journal of Biological Chemistry 7: 231–239.

PubMed  PubMed Central  Article  Google Scholar 

Mora, A.L., E. Torres-Gonzalez, M. Rojas, C. Corredor, J. Ritzenthaler, J. Xu, J. Roman, K. Brigham, and A. Stecenko. 2006. Activation of alveolar macrophages via the alternative pathway in herpesvirus-induced lung fibrosis. American Journal of Respiratory Cell and Molecular Biology 35: 466–473.

CAS  PubMed  PubMed Central  Article  Google Scholar 

D’Alessio, F.R., J.M. Craig, B.D. Singer, D.C. Files, J.R. Mock, B.T. Garibaldi, J. Fallica, A. Tripathi, P. Mandke, J.H. Gans, et al. 2016. Enhanced resolution of experimental ARDS through IL-4-mediated lung macrophage reprogramming. American Journal of Physiology. Lung Cellular and Molecular Physiology 310: L733-746.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Wendisch, D., O. Dietrich, T. Mari, S. von Stillfried, I.L. Ibarra, M. Mittermaier, C. Mache, R.L. Chua, R. Knoll, S. Timm, et al. 2021. SARS-CoV-2 infection triggers profibrotic macrophage responses and lung fibrosis. Cell 184 (6243–6261): e6227.

Google Scholar 

Kojicic, M., G. Li, A.C. Hanson, K.M. Lee, L. Thakur, J. Vedre, A. Ahmed, L.M. Baddour, J.H. Ryu, and O. Gajic. 2012. Risk factors for the development of acute lung injury in patients with infectious pneumonia. Critical Care 16: R46.

PubMed  PubMed Central  Article  Google Scholar 

Berlin, D.A., R.M. Gulick, and F.J. Martinez. 2020. Severe Covid-19. New England Journal of Medicine 383: 2451–2460.

CAS  PubMed  Article  Google Scholar 

Kosyreva, A., D. Dzhalilova, A. Lokhonina, P. Vishnyakova, and T. Fatkhudinov. 2021. The Role of Macrophages in the Pathogenesis of SARS-CoV-2-Associated Acute Respiratory Distress Syndrome. Frontiers in Immunology 12: 682871.

CAS  PubMed  PubMed Central  Article  Google Scholar 

McGonagle, D., K. Sharif, A. O’Regan, and C. Bridgewood. 2020. The Role of Cytokines including Interleukin-6 in COVID-19 induced Pneumonia and Macrophage Activation Syndrome-Like Disease. Autoimmunity Reviews 19: 102537.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Tay, M.Z., C.M. Poh, L. Renia, P.A. MacAry, and L.F.P. Ng. 2020. The trinity of COVID-19: Immunity, inflammation and intervention. Nature Reviews Immunology 20: 363–374.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Liao, M., Y. Liu, J. Yuan, Y. Wen, G. Xu, J. Zhao, L. Cheng, J. Li, X. Wang, F. Wang, et al. 2020. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nature Medicine 26: 842–844.

CAS  PubMed  Article  Google Scholar 

Boumaza, A., L. Gay, S. Mezouar, E. Bestion, A.B. Diallo, M. Michel, B. Desnues, D. Raoult, B. La Scola, P. Halfon, et al. 2021. Monocytes and Macrophages, Targets of Severe Acute Respiratory Syndrome Coronavirus 2: The Clue for Coronavirus Disease 2019 Immunoparalysis. Journal of Infectious Diseases 224: 395–406.

CAS  PubMed  Article  Google Scholar 

Wang, C., J. Xie, L. Zhao, X. Fei, H. Zhang, Y. Tan, X. Nie, L. Zhou, Z. Liu, Y. Ren, et al. 2020. Alveolar macrophage dysfunction and cytokine storm in the pathogenesis of two severe COVID-19 patients. eBioMedicine 57: 102833.

PubMed  PubMed Central  Article  Google Scholar 

Hoepel, W., H.J. Chen, C.E. Geyer, S. Allahverdiyeva, X.D. Manz, S.W. de Taeye, J. Aman, L. Mes, M. Steenhuis, G.R. Griffith, et al. 2021. High titers and low fucosylation of early human anti-SARS-CoV-2 IgG promote inflammation by alveolar macrophages. Sci Transl Med 13.

Li, G., M. Malinchoc, R. Cartin-Ceba, C.V. Venkata, D.J. Kor, S.G. Peters, R.D. Hubmayr, and O. Gajic. 2011. Eight-year trend of acute respiratory distress syndrome: A population-based study in Olmsted County, Minnesota. American Journal of Respiratory and Critical Care Medicine 183: 59–66.

PubMed  Article  Google Scholar 

He, H., B. Sun, L. Liang, Y. Li, H. Wang, L. Wei, G. Li, S. Guo, J. Duan, Y. Li, et al. 2019. A multicenter RCT of noninvasive ventilation in pneumonia-induced early mild acute respiratory distress syndrome. Critical Care 23: 300.

PubMed  PubMed Central  Article  Google Scholar 

Amarante-Mendes, G.P., S. Adjemian, L.M. Branco, L.C. Zanetti, R. Weinlich, and K.R. Bortoluci. 2018. Pattern Recognition Receptors and the Host Cell Death Molecular Machinery. Frontiers in Immunology 9: 2379.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Miller, A.L., T.L. Bowlin, and N.W. Lukacs. 2004. Respiratory syncytial virus-induced chemokine production: Linking viral replication to chemokine production in vitro and in vivo. Journal of Infectious Diseases 189: 1419–1430.

CAS  PubMed  Article  Google Scholar 

Mäkelä, M.J., R. Tripp, A. Dakhama, J.-W. Park, T. Ikemura, A. Joetham, M. Waris, L.J. Anderson, and E.W. Gelfand. 2003. Prior airway exposure to allergen increases virus-induced airway hyperresponsiveness. Journal of Allergy and Clinical Immunology 112: 861–869.

PubMed  Article  Google Scholar 

Senft, A.P., R.H. Taylor, W. Lei, S.A. Campbell, J.L. Tipper, M.J. Martinez, T.L. Witt, C.C. Clay, and K.S. Harrod. 2010. Respiratory syncytial virus impairs macrophage IFN-alpha/beta- and IFN-gamma-stimulated transcription by distinct mechanisms. American Journal of Respiratory Cell and Molecular Biology 42: 404–414.

CAS  PubMed  Article  Google Scholar 

Shibata, T., A. Makino, R. Ogata, S. Nakamura, T. Ito, K. Nagata, Y. Terauchi, T. Oishi, M. Fujieda, Y. Takahashi, and M. Ato. 2020. Respiratory syncytial virus infection exacerbates pneumococcal pneumonia via Gas6/Axl-mediated macrophage polarization. The Journal of Clinical Investigation 130: 3021–3037.

CAS  PubMed  PubMed Central  Article 

留言 (0)

沒有登入
gif