Targeting Novel microRNAs in Developing Novel Alzheimer's Disease Treatments

Ko H-J, Chiou S-J, Wong Y-H, Wang Y-H, Lai Y-L, Chou C-H, Wang C, Loh J-K, Lieu A-S, Cheng J-T (2019) GSKIP-mediated anchoring increases phosphorylation of tau by PKA but not by GSK3beta via cAMP/PKA/GSKIP/GSK3/Tau axis signaling in cerebrospinal fluid and iPS cells in Alzheimer disease. J Clin Med 8:1751

CAS  PubMed Central  Article  Google Scholar 

Barros-Viegas AT, Carmona V, Ferreiro E, Guedes J, Cardoso AM, Cunha P, de Almeida LP, de Oliveira CR, de Magalhães JP, Peça J (2020) miRNA-31 improves cognition and abolishes amyloid-β pathology by targeting APP and BACE1 in an animal model of alzheimer’s disease. Mol Ther Nucleic Acids 19:1219–1236

CAS  PubMed  PubMed Central  Article  Google Scholar 

Bloom GS (2014) Amyloid-β and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol 71:505–508

PubMed  Article  Google Scholar 

Prendecki M, Florczak-Wyspianska J, Kowalska M, Ilkowski J, Grzelak T, Bialas K, Kozubski W, Dorszewska J (2019) APOE genetic variants and apoE, miR-107 and miR-650 levels in Alzheimer’s disease. Folia Neuropathol 57:106–116

PubMed  Article  Google Scholar 

Kinney JW, Bemiller SM, Murtishaw AS, Leisgang AM, Salazar AM, Lamb BT (2018) Inflammation as a central mechanism in Alzheimer’s disease. Alzheimer’s Dementia 4:575–590

PubMed  PubMed Central  Article  Google Scholar 

Wang C, Song C, Wang X, Huang L, Ding M, Yang H, Wang P, Xu L, Xie Z, Bi J (2019) Protective effects of melatonin on mitochondrial biogenesis and mitochondrial structure and function in the HEK293-APPswe cell model of Alzheimer’s disease. Eur Rev Med Pharmacol Sci 23:3542–3550

PubMed  Google Scholar 

Cheignon C, Tomas M, Bonnefont-Rousselot D, Faller P, Hureau C, Collin F (2018) Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol 14:450–464

CAS  PubMed  Article  Google Scholar 

O’Brien J, Hayder H, Zayed Y, Peng C (2018) Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol 9:402

CAS  Article  Google Scholar 

Lee SWL, Paoletti C, Campisi M, Osaki T, Adriani G, Kamm RD, Mattu C, Chiono V (2019) MicroRNA delivery through nanoparticles. J Control Release 313:80–95

CAS  PubMed  PubMed Central  Article  Google Scholar 

Higaki S, Muramatsu M, Matsuda A, Matsumoto K, Satoh J-i, Michikawa M, Niida S (2018) Defensive effect of microRNA-200b/c against amyloid-beta peptide-induced toxicity in Alzheimer’s disease models. PLoS ONE 13:e0196929

PubMed  PubMed Central  Article  CAS  Google Scholar 

Reddy PH, Tonk S, Kumar S, Vijayan M, Kandimalla R, Kuruva CS, Reddy AP (2017) A critical evaluation of neuroprotective and neurodegenerative MicroRNAs in Alzheimer’s disease. Biochem Biophys Res Commun 483:1156–1165

CAS  PubMed  Article  Google Scholar 

Salta E, De Strooper B (2017) microRNA-132: A key noncoding RNA operating in the cellular phase of Alzheimer’s disease. FASEB J 31:424–433

CAS  PubMed  Article  Google Scholar 

Hafez HA, Kamel MA, Osman MY, Osman HM, Elblehi SS, Mahmoud SA (2021) Ameliorative effects of astaxanthin on brain tissues of alzheimer’s disease-like model: cross talk between neuronal-specific microRNA-124 and related pathways. Mol Cell Biochem 476:2233–2249

CAS  PubMed  Article  Google Scholar 

Kumar S, Reddy PH (2019) A new discovery of MicroRNA-455-3p in Alzheimer’s disease. J Alzheimers Dis 72:S117–S130

CAS  PubMed  Article  Google Scholar 

Liu R, Wang L-l, Jiang H-l (2020) MicroRNA-200a-3p mediates neuroprotection in Alzheimer-related deficits and attenuates amyloid-beta overproduction and tau hyperphosphorylation via co-regulating BACE1 and PRKACB. FASEB J 34:1–1

Article  Google Scholar 

Cao J, Huang M, Guo L, Zhu L, Hou J, Zhang L, Pero A, Ng S, El Gaamouch F, Elder G (2020) MicroRNA-195 rescues ApoE4-induced cognitive deficits and lysosomal defects in Alzheimer’s disease pathogenesis. Mol Psychiatry 26(9):4687–4701. https://doi.org/10.1038/s41380-020-0824-3

CAS  Article  PubMed  PubMed Central  Google Scholar 

Zhou Y, Wang ZF, Li W, Hong H, Chen J, Tian Y, Liu ZY (2018) Protective effects of microRNA-330 on amyloid β-protein production, oxidative stress, and mitochondrial dysfunction in Alzheimer’s disease by targeting VAV1 via the MAPK signaling pathway. J Cell Biochem 119:5437–5448

CAS  PubMed  Article  Google Scholar 

Kumar S, Reddy AP, Yin X, Reddy PH (2019) Novel MicroRNA-455-3p and its protective effects against abnormal APP processing and amyloid beta toxicity in Alzheimer’s disease. Biochim Biophys Acta BBA 1865:2428–2440

CAS  Article  Google Scholar 

Chen X-Q, Mobley WC (2019) Alzheimer disease pathogenesis: insights from molecular and cellular biology studies of oligomeric Aβ and tau species. Front Neurosci 13:659

PubMed  PubMed Central  Article  Google Scholar 

Shahidi S, Hashemi-Firouzi N, Asl SS, Komaki A (2019) Serotonin type 6 receptor antagonist attenuates the impairment of long-term potentiation and memory induced by Abeta. Behav Brain Res 364:205–212

CAS  PubMed  Article  Google Scholar 

Palmeri A, Ricciarelli R, Gulisano W, Rivera D, Rebosio C, Calcagno E, Tropea MR, Conti S, Das U, Roy S (2017) Amyloid-β peptide is needed for cGMP-induced long-term potentiation and memory. J Neurosci 37:6926–6937

CAS  PubMed  PubMed Central  Article  Google Scholar 

Reddy PH, Yin X, Manczak M, Kumar S, Pradeepkiran JA, Vijayan M, Reddy AP (2018) Mutant APP and amyloid beta-induced defective autophagy, mitophagy, mitochondrial structural and functional changes and synaptic damage in hippocampal neurons from Alzheimer’s disease. Hum Mol Genet 27:2502–2516

CAS  PubMed  PubMed Central  Article  Google Scholar 

Multhaup G, Huber O, Buée L, Galas M-C (2015) Amyloid precursor protein (APP) metabolites APP intracellular fragment (AICD), Aβ42, and tau in nuclear roles. J Biol Chem 290:23515–23522

CAS  PubMed  PubMed Central  Article  Google Scholar 

Liang C, Zhu H, Xu Y, Huang L, Ma C, Deng W, Liu Y, Qin C (2012) MicroRNA-153 negatively regulates the expression of amyloid precursor protein and amyloid precursor-like protein 2. Brain Res 1455:103–113

CAS  PubMed  Article  Google Scholar 

Feng C-Z, Yin J-B, Yang J-J, Cao L (2017) Regulatory factor X1 depresses ApoE-dependent Aβ uptake by miRNA-124 in microglial response to oxidative stress. Neuroscience 344:217–228

CAS  PubMed  Article  Google Scholar 

Conway ME (2020) Alzheimer’s disease: targeting the glutamatergic system. Biogerontology 21:257–274

CAS  PubMed  PubMed Central  Article  Google Scholar 

Kumar MS, Lu J, Mercer KL, Golub TR, Jacks T (2007) Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet 39:673–677

CAS  PubMed  Article  Google Scholar 

Salimian N, Peymani M, Ghaedi K, Esfahani MHN (2018) Modulation in miR-200a/SIRT1axis is associated with apoptosis in MPP+-induced SH-SY5Y cells. Gene 674:25–30

CAS  PubMed  Article  Google Scholar 

Wang L, Liu J, Wang Q, Jiang H, Zeng L, Li Z, Liu R (2019) MicroRNA-200a-3p mediates neuroprotection in Alzheimer-related deficits and attenuates amyloid-beta overproduction and tau hyperphosphorylation via coregulating BACE1 and PRKACB. Front Pharmacol 10:806

PubMed  PubMed Central  Article  CAS  Google Scholar 

Bahn G, Park J-S, Yun UJ, Lee YJ, Choi Y, Park JS, Baek SH, Choi BY, Cho YS, Kim HK (2019) NRF2/ARE pathway negatively regulates BACE1 expression and ameliorates cognitive deficits in mouse Alzheimer’s models. Proc Natl Acad Sci USA 116:12516–12523

CAS  PubMed  PubMed Central  Article  Google Scholar 

Zhu H-C, Wang L-M, Wang M, Song B, Tan S, Teng J-F, Duan D-X (2012) MicroRNA-195 downregulates Alzheimer’s disease amyloid-β production by targeting BACE1. Brain Res Bull 88:596–601

CAS  PubMed  Article  Google Scholar 

Pan K, Chen S, Wang Y, Yao W, Gao X (2021) MicroRNA-23b attenuates tau pathology and inhibits oxidative stress by targeting GnT-III in Alzheimer’s disease. Neuropharmacology 196:108671. https://doi.org/10.1016/j.neuropharm.2021.108671

CAS  Article  PubMed  Google Scholar 

Fry AL, Laboy JT, Norman KR (2014) VAV-1 acts in a single interneuron to inhibit motor circuit activity in Caenorhabditis elegans. Nat Commun 5:1–13

Google Scholar 

Grassilli S, Brugnoli F, Lattanzio R, Rossi C, Perracchio L, Mottolese M, Marchisio M, Palomba M, Nika E, Natali PG (2014) High nuclear level of Vav1 is a positive prognostic factor in early invasive breast tumors: a role in modulating genes related to the efficiency of metastatic process. Oncotarget 5:4320

PubMed  PubMed Central  Article  Google Scholar 

Kwon OY, Lee SH (2020) Ameliorating activity of Ishige okamurae on the amyloid beta-induced cognitive deficits and neurotoxicity through regulating ERK, p38 MAPK, and JNK signaling in Alzheimer’s disease-like mice model. Mol Nutr Food Res 64:1901220

CAS  Article  Google Scholar 

Head BP, Peart JN, Panneerselvam M, Yokoyama T, Pearn ML, Niesman IR, Bonds JA, Schilling JM, Miyanohara A, Headrick J (2010) Loss of caveolin-1 accelerates neurodegeneration and aging. PLoS ONE 5:e15697

CAS  PubMed  PubMed Central  Article  Google Scholar 

Cosme J, Liu PP, Gramolini AO (2013) The cardiovascular exosome: current perspectives and potential. Proteomics 13:1654–1659

留言 (0)

沒有登入
gif