Changes in Corticospinal Excitability and Motor Control During Cerebellar Transcranial Direct Current Stimulation in Healthy Individuals

Ates MP, Alaydin HC, Cengiz B. The effect of the anodal transcranial direct current stimulation over the cerebellum on the motor cortex excitability. Brain Res Bull. 2018;140:114–9.

PubMed  Article  Google Scholar 

Kassavetis P, Hoffland BS, Saifee TA, et al. Cerebellar brain inhibition is decreased in active and surround muscles at the onset of voluntary movement. Exp Brain Res. 2011;209(3):437–42.

PubMed  Article  Google Scholar 

Chu CY, Patterson RM. Soft robotic devices for hand rehabilitation and assistance: a narrative review. J Neuroeng Rehabil. 2018;15(1):9.

PubMed  PubMed Central  Article  Google Scholar 

Germanotta M, Gower V, Papadopoulou D, et al. Reliability, validity and discriminant ability of a robotic device for finger training in patients with subacute stroke. J Neuroeng Rehabil. 2020;17(1):1.

PubMed  PubMed Central  Article  Google Scholar 

Chan CY, Nicholson C. Modulation by applied electric fields of Purkinje and stellate cell activity in the isolated turtle cerebellum. J Physiol. 1986;371:89–114.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Chan CY, Hounsgaard J, Nicholson C. Effects of electric fields on transmembrane potential and excitability of turtle cerebellar Purkinje cells in vitro. J Physiol. 1988;402:751–71.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Galea JM, Jayaram G, Ajagbe L, Celnik P. Modulation of cerebellar excitability by polarity-specific noninvasive direct current stimulation. J Neurosci. 2009;29(28):9115–22.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Batsikadze G, Rezaee Z, Chang DI, et al. Effects of cerebellar transcranial direct current stimulation on cerebellar-brain inhibition in humans: a systematic evaluation. Brain Stimul. 2019;12(5):1177–86.

PubMed  Article  Google Scholar 

Jayaram G, Galea JM, Bastian AJ, Celnik P. Human locomotor adaptive learning is proportional to depression of cerebellar excitability. Cereb Cortex. 2011;21(8):1901–9.

PubMed  PubMed Central  Article  Google Scholar 

Katagiri N, Kawakami S, Okuyama S, et al. Single-session cerebellar transcranial direct current stimulation affects postural control learning and cerebellar brain inhibition in healthy individuals. Cerebellum. 2021;20(2):203–11.

PubMed  Article  Google Scholar 

Kenville R, Maudrich T, Maudrich D, Villringer A, Ragert P. Cerebellar transcranial direct current stimulation improves maximum isometric force production during isometric barbell squats. Brain Sci. 2020;10(4):235.

PubMed Central  Article  Google Scholar 

Jackson AK, de Albuquerque LL, Pantovic M, et al. Cerebellar transcranial direct current stimulation enhances motor learning in a complex overhand throwing task. Cerebellum. 2019;18(4):813–6.

PubMed  Article  Google Scholar 

Jongkees BJ, Immink MA, Boer OD, Yavari F, Nitsche MA, Colzato LS. The effect of cerebellar tDCS on sequential motor response selection. Cerebellum. 2019;18(4):738–49.

PubMed  PubMed Central  Article  Google Scholar 

Hamada M, Galea JM, Di Lazzaro V, Mazzone P, Ziemann U, Rothwell JC. Two distinct interneuron circuits in human motor cortex are linked to different subsets of physiological and behavioral plasticity. J Neurosci. 2014;34(38):12837–49.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527(3)(Pt 3):633–9.

Puri R, Hinder MR, Fujiyama H, Gomez R, Carson RG, Summers JJ. Duration-dependent effects of the BDNF Val66Met polymorphism on anodal tDCS induced motor cortex plasticity in older adults: a group and individual perspective. Front Aging Neurosci. 2015;7:107.

PubMed  PubMed Central  Article  Google Scholar 

Weightman M, Brittain JS, Punt D, Miall RC, Jenkinson N. Targeted tDCS selectively improves motor adaptation with the proximal and distal upper limb. Brain Stimul. 2020;13(3):707–16.

PubMed  Article  Google Scholar 

Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175–91.

PubMed  Article  Google Scholar 

Grimaldi G, Manto M. Anodal transcranial direct current stimulation (tDCS) decreases the amplitudes of long-latency stretch reflexes in cerebellar ataxia. Ann Biomed Eng. 2013;41(11):2437–47.

PubMed  Article  Google Scholar 

Saturnino GB, et al. SimNIBS 2.1: A comprehensive pipeline for individualized electric field modelling for transcranial brain stimulation. In: Makarov S, Horner M, Noetscher G, editors. Brain and Human Body Modeling: Computational Human Modeling at EMBC 2018; vol 2019, The Author(s). Cham (CH); 2019, Springer Copyright:3–25.

Priori A, Ciocca M, Parazzini M, Vergari M, Ferrucci R. Transcranial cerebellar direct current stimulation and transcutaneous spinal cord direct current stimulation as innovative tools for neuroscientists. J Physiol. 2014;592(16):3345–69.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hara M, Kimura J, Walker DD, et al. Effect of motor imagery and voluntary muscle contraction on the F wave. Muscle Nerve. 2010;42(2):208–12.

PubMed  Article  Google Scholar 

Vastano R, Perez MA. Changes in motoneuron excitability during voluntary muscle activity in humans with spinal cord injury. J Neurophysiol. 2020;123(2):454–61.

PubMed  Article  Google Scholar 

Eisen A, Fisher M. The F wave. The International Federation of clinical neurophysiology. Electroencephalogr Clin Neurophysiol Suppl. 1999;52:255–57.

Puksa L, Stålberg E, Falck B. Reference values of F wave parameters in healthy subjects. Clin Neurophysiol. 2003;114(6):1079–90.

PubMed  Article  Google Scholar 

Perez MA, Rothwell JC. Distinct influence of hand posture on cortical activity during human grasping. J Neurosci. 2015;35(12):4882–9.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Fritsch B, Reis J, Martinowich K, et al. Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron. 2010;66(2):198–204.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Wang B, Xiao S, Yu C, Zhou J, Fu W. Effects of transcranial direct current stimulation combined with physical training on the excitability of the motor cortex, physical performance, and motor learning: a systematic review. Front Neurosci. 2021;15: 648354.

PubMed  PubMed Central  Article  Google Scholar 

Kuhtz-Buschbeck JP, Gilster R, Wolff S, Ulmer S, Siebner H, Jansen O. Brain activity is similar during precision and power gripping with light force: an fMRI study. Neuroimage. 2008;40(4):1469–81.

CAS  PubMed  Article  Google Scholar 

Bonnard M, Galléa C, De Graaf JB, Pailhous J. Corticospinal control of the thumb-index grip depends on precision of force control: a transcranial magnetic stimulation and functional magnetic resonance imagery study in humans. Eur J Neurosci. 2007;25(3):872–80.

CAS  PubMed  Article  Google Scholar 

Abe M, Schambra H, Wassermann EM, Luckenbaugh D, Schweighofer N, Cohen LG. Reward improves long-term retention of a motor memory through induction of offline memory gains. Curr Biol. 2011;21(7):557–62.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Lopez-Alonso V, Liew SL, Fernández Del Olmo M, et al. A preliminary comparison of motor learning across different non-invasive brain stimulation paradigms shows no consistent modulations. Front Neurosci. 2018;12:253.

PubMed  PubMed Central  Article  Google Scholar 

Nitsche MA, Fricke K, Henschke U, et al. Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. J Physiol. 2003;553(1):293–301.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Nitsche MA, Seeber A, Frommann K, et al. Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex. J Physiol. 2005;568(1):291–303.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Pauly MG, Steinmeier A, Bolte C, et al. Cerebellar rTMS and PAS effectively induce cerebellar plasticity. Sci Rep. 2021;11(1):3070.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Doeltgen SH, Young J, Bradnam LV. Anodal direct current stimulation of the cerebellum reduces cerebellar brain inhibition but does not influence afferent input from the hand or face in healthy adults. Cerebellum. 2016;15(4):466–74.

PubMed  Article  Google Scholar 

Bradnam LV, Graetz LJ, McDonnell MN, Ridding MC. Anodal transcranial direct current stimulation to the cerebellum improves handwriting and cyclic drawing kinematics in focal hand dystonia. Front Hum Neurosci. 2015;9:286.

PubMed  PubMed Central  Article  Google Scholar 

Kawakami S, Inukai Y, Ikarashi H, et al. Transcranial direct current stimulation and transcranial random noise stimulation over the cerebellum differentially affect the cerebellum and primary motor cortex pathway. J Clin Neurosci. 2022;100:59–65.

PubMed  Article  Google Scholar 

Grami F, de Marco G, Bodranghien F, Manto M, Habas C. Cerebellar transcranial direct current stimulation reconfigurates static and dynamic functional connectivity of the resting-state networks. Cerebellum Ataxias. 2021;8(1):7.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Laakso I, Tanaka S, Koyama S, De Santis V, Hirata A. Inter-subject variability in electric fields of motor cortical tDCS. Brain Stimul. 2015;8(5):906–13.

PubMed  Article 

留言 (0)

沒有登入
gif