Maternal obesity alters methylation level of cytosine in CpG island for epigenetic inheritance in fetal umbilical cord blood

Swinburn BA, et al. The global obesity pandemic: shaped by global drivers and local environments. The Lancet. 2011;378(9793):804–14.

Article  Google Scholar 

Gregg EW, Shaw JE. Global health effects of overweight and obesity. N Engl J Med. 2017;377(1):80–1.

PubMed  Article  Google Scholar 

Cattane N, et al. Depression, obesity and their comorbidity during pregnancy: effects on the offspring’s mental and physical health. Mol Psychiatry. 2021;26(2):462–81.

PubMed  Article  Google Scholar 

Godfrey KM, et al. Influence of maternal obesity on the long-term health of offspring. Lancet Diabetes Endocrinol. 2017;5(1):53–64.

PubMed  Article  Google Scholar 

Nelson SM, Matthews P, Poston L. Maternal metabolism and obesity: modifiable determinants of pregnancy outcome. Hum Reprod Update. 2010;16(3):255–75.

PubMed  Article  Google Scholar 

Oken E, et al. Maternal gestational weight gain and offspring weight in adolescence. Obstet Gynecol. 2008;112(5):999–1006.

PubMed  PubMed Central  Article  Google Scholar 

Sun Y, et al. Multigenerational maternal obesity increases the incidence of HCC in offspring via miR-27a-3p. J Hepatol. 2020;73(3):603–15.

CAS  PubMed  Article  Google Scholar 

Jing J, et al. Maternal obesity alters C19MC microRNAs expression profile in fetal umbilical cord blood. Nutr Metab. 2020;17:52–52.

CAS  Article  Google Scholar 

Bošković A, Rando OJ. Transgenerational epigenetic inheritance. Annu Rev Genet. 2018;52:21–41.

PubMed  Article  CAS  Google Scholar 

Nagy C, Turecki G. Transgenerational epigenetic inheritance: an open discussion. Epigenomics. 2015;7(5):781–90.

CAS  PubMed  Article  Google Scholar 

Reik W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature. 2007;447(7143):425–32.

CAS  PubMed  Article  Google Scholar 

Cyr AR, Domann FE. The redox basis of epigenetic modifications: from mechanisms to functional consequences. Antioxid Redox Signal. 2011;15(2):551–89.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Mayer W, et al. Demethylation of the zygotic paternal genome. Nature. 2000;403(6769):501–2.

CAS  PubMed  Article  Google Scholar 

Oswald J, et al. Active demethylation of the paternal genome in the mouse zygote. Curr Biol. 2000;10(8):475–8.

CAS  PubMed  Article  Google Scholar 

Lei H, et al. De novo DNA cytosine methyltransferase activities in mouse embryonic stem cells. Development. 1996;122(10):3195–205.

CAS  PubMed  Article  Google Scholar 

Milagro FI, et al. Dietary factors, epigenetic modifications and obesity outcomes: progresses and perspectives. Mol Aspects Med. 2013;34(4):782–812.

CAS  PubMed  Article  Google Scholar 

Park J-H, et al. Epigenetic modification by dietary factors: Implications in metabolic syndrome. Mol Aspects Med. 2017;54:58–70.

CAS  PubMed  Article  Google Scholar 

Trerotola M, et al. Epigenetic inheritance and the missing heritability. Hum Genomics. 2015;9(1):17–17.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Xiang H, et al. Single base-resolution methylome of the silkworm reveals a sparse epigenomic map. Nat Biotechnol. 2010;28(5):516–20.

CAS  PubMed  Article  Google Scholar 

Deng J, et al. Targeted bisulfite sequencing reveals changes in DNA methylation associated with nuclear reprogramming. Nat Biotechnol. 2009;27(4):353–60.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Heyn H, et al. Distinct DNA methylomes of newborns and centenarians. Proc Natl Acad Sci U S A. 2012;109(26):10522–7.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Cokus SJ, et al. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature. 2008;452(7184):215–9.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Mortazavi A, et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008;5(7):621–8.

CAS  PubMed  Article  Google Scholar 

Lister R, et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature. 2009;462(7271):315–22.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Di Ruscio A, et al. DNMT1-interacting RNAs block gene-specific DNA methylation. Nature. 2013;503(7476):371–6.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Loriot A, et al. Transient down-regulation of DNMT1 methyltransferase leads to activation and stable hypomethylation of MAGE-A1 in melanoma cells*. J Biol Chem. 2006;281(15):10118–26.

CAS  PubMed  Article  Google Scholar 

Saito Y, et al. Overexpression of a splice variant of DNA methyltransferase 3b, DNMT3b4, associated with DNA hypomethylation on pericentromeric satellite regions during human hepatocarcinogenesis. Proc Natl Acad Sci U S A. 2002;99(15):10060–5.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Ostler KR, et al. Cancer cells express aberrant DNMT3B transcripts encoding truncated proteins. Oncogene. 2007;26(38):5553–63.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Woo H, et al. Modulation of gene expression dynamics by co-transcriptional histone methylations. Exp Mol Med. 2017;49(4): e326.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Dong M, et al. Maternal obesity, lipotoxicity and cardiovascular diseases in offspring. J Mol Cell Cardiol. 2013;55:111–6.

CAS  PubMed  Article  Google Scholar 

Marchi J, et al. Risks associated with obesity in pregnancy, for the mother and baby: a systematic review of reviews. Obes Rev. 2015;16(8):621–38.

CAS  PubMed  Article  Google Scholar 

Santangeli L, Sattar N, Huda SS. Impact of maternal obesity on perinatal and childhood outcomes. Best Pract Res Clin Obstet Gynaecol. 2015;29(3):438–48.

PubMed  Article  Google Scholar 

Hui L, Bianchi DW. Recent advances in the prenatal interrogation of the human fetal genome. Trends Genet. 2013;29(2):84–91.

CAS  PubMed  Article  Google Scholar 

Lee IL, et al. Cord blood metabolic markers are strong mediators of the effect of maternal adiposity on fetal growth in pregnancies across the glucose tolerance spectrum: the PANDORA study. Diabetologia. 2020;63(3):497–507.

CAS  PubMed  Article  Google Scholar 

Manczak EM, Gotlib IH. Lipid profiles at birth predict teacher-rated child emotional and social development 5 years later. Psychol Sci. 2019;30(12):1780–9.

PubMed  PubMed Central  Article  Google Scholar 

Kaukola T, et al. Perinatal immunoproteins predict the risk of cerebral palsy in preterm children. Ann Med. 2013;45(1):57–65.

CAS  PubMed  Article  Google Scholar 

Nissen SP, et al. Can family history and cord blood IgE predict sensitization and allergic diseases up to adulthood? Pediatr Allergy Immunol. 2015;26(1):42–8.

PubMed  Article  Google Scholar 

Bagias C, et al. Cord blood adipocytokines and body composition in early childhood: a systematic review and meta-analysis. Int J Environ Res Public Health. 2021;18(4):1897.

PubMed  PubMed Central  Article  Google Scholar 

Liu X, et al. Maternal preconception body mass index and offspring cord blood DNA methylation: exploration of early life origins of disease. Environ Mol Mutagen. 2014;55(3):223–30.

CAS  PubMed  Article  Google Scholar 

Sureshchandra S, et al. Maternal pregravid obesity remodels the DNA methylation landscape of cord blood monocytes disrupting their inflammatory program. J Immunology. 2017;199(8):2729–44.

CAS  Article  Google Scholar 

Okamoto I, et al. Eutherian mammals use diverse strategies to initiate X-chromosome inactivation during development. Nature. 2011;472(7343):370–4.

CAS 

留言 (0)

沒有登入
gif