Medicinal waterbirds in the traditional healthcare system: an assessment of biodiversity–cultural linkages in Eastern Khyber Pakhtunkhwa, Pakistan

Socio-demographic data

Gathering socio-demographic data on participants (gender, age, educational level, occupation, and ethnicity) is particularly beneficial in ethnobiological research, as this element plays a significant role in analyzing and interpreting the responses received [67]. The older respondents, particularly those aged over 30 years, were highly populated in the study area (Fig. 2) and possessed significantly more traditional knowledge compared to younger participants. Community elders are often the holders of the most species information [68]. They are engaged in family responsibilities such as finance, health, and education and do not pass their knowledge to the next generation. As a result, knowledge of medicinal waterbird usage is diminishing. Similar research conducted in Pakistan and other countries showed that older respondents had significant traditional knowledge than younger participants [69,70,71,72].

Educated individuals in the study region were found to be less knowledgeable about the use of medicinal waterbirds than illiterate people, due to their higher exposure to modernization. Similar findings were reported in the research studies conducted in southern KPK [73] and central Punjab [11].

Temporal shifts of folk knowledge and local nomenclature

According to traditional health practitioners (THPs), knowledge about the use of medicinal waterbird(s) was derived from either one or more of these sources: (i) medicinal knowledge regarding the use of waterbird(s) was passed from generation to generation within the family, (ii) folk knowledge was gained from teachers, religious scholars, and hakeems, (iii) knowledge was gained from reading published traditional folklore books, (iv) knowledge was obtained by experimentation with waterbird species, which was then applied on humans, (v) traditional knowledge was gained in aspirations, and (vi) a comparable assortment of medicinal waterbird(s) to treat any specific ailment of the human body parts. Transfer of cultural knowledge and traditional information from parents to children, preferably to sons, was found to be the most prevalent, as in other communities across the world [74,75,76,77,78,79]. Moreover, local taxonomy represents the vernacular names of species which give clues about social associations, myths, morphological differences, and ecology [80].

Folklore and cultural applications of waterbird species

Some waterbird species are more used as food, medicine, and hunting, e.g., mallard, common teal, gadwall, northern pintail, shoveler, common pochard, Eurasian coot, Eurasian wigeon, garganey, great white-fronted goose, graylag goose, little cormorant, great cormorant, and red-crested pochard (Fig. 7). In total, 40 waterbird species were utilized as foodstuffs in the study area (Table 1). A total of 18 species are exported from the study area, while the feathers of 62 waterbird species are utilized in decoration (Table 1 and Fig. 7). Waterbird species are also utilized as food, according to other ornithologists [2, 3, 11].

Fig. 7figure 7

Heatmap of waterbird species usage by informants for MD (medicinal), FD (food), SPS (superstitious), HN (hunting), EX (export), and OR (ornamental) purposes in Eastern KPK, Pakistan. Green and red colors indicate increased and decreased values of informants, respectively

Forty-four species of birds are connected with superstitious beliefs, such as people of the local area believing that ducks (i.e., gadwall, common teal, mallard, northern pintail, northern shoveler, red-crested pochard, common pochard, tufted duck, garganey, European wigeon, common shelduck, ruddy shelduck, ferruginous duck, smew, great crested grebe, Eurasian coot, and little grebe), kingfishers (i.e., pied kingfisher and common kingfisher), and gooses (i.e., graylag goose and great white-fronted goose) are a sign of prosperity. The following are superstitions about egrets (i.e., intermediate egret, little white egret, cattle egret, and great egret) and terns (i.e., black-bellied tern and common tern): If someone harms egrets, it will be bad luck (i.e., gray heron, Indian pond heron, and black-crowned night heron). It is documented that herons are a sign of bad luck if they are present at home. Superstition about storks (black stork and white stork) is that when storks lay down their heads and necks back over their bodies at this time, it means a storm will come. Gulls are also superstitious in the study area, as if three gulls (i.e., common black-headed gull, Caspian gull, lesser black-headed gull, and great black-backed gull) are flying directly over a person; it is a sign of the death of this person. Likewise, it is noted that if red-rumped swallows and martens (i.e., sand martin and pale crag martin) are settled in any house, it is a sign of poverty. Similarly, lapwings (yellow-wattled lapwing and red-wattled lapwing) have superstitions that if these birds cry at your house, it is a sign of a visitor (Table 1). These findings were also documented by other ornithologists [5, 11, 81].

Ethnomedicinal uses of waterbird species

The meat of waterbird species was the most utilized body part in the study area (Fig. 8). Meat of waterbird species was commonly used to treat various human ailments such as respiratory disorders, gastric ulcers, arthritis, obesity, body pain, and piles (Fig. 9). People specifically hunted waterbirds for meat. Cold, cough, fever, flu, bronchitis, breathing problems, infertility, asthma, abscess, anemia, body weakness, body strength, enhanced memory, immune enhancer, epilepsy, menorrhagia, paralysis, puberty in young girls, skin diseases, sexual power, and wound healing are all treated with meat from various waterbird species [1, 3, 7, 17, 28, 82,83,84,85,86]. The inhabitants of the study area also use fat to treat arthritis, body pain, and male impotency (Table 2 and Fig. 8). In fact, the presence of “omega-3 fatty acid” in fat cures inflammation [87]. Moreover, “omega-3 fatty acid” is also useful in atherosclerosis, thrombotic, neurological disorders, and aging effects [10, 88,89,90].

Fig. 8figure 8

Relationship between body parts and diseases used in the study area

Fig. 9figure 9

Waterbird species distribution according to the treatment of various ailments in Eastern KPK, Pakistan. Codes represent the species names as they appear in Table 2

It was found that local inhabitants of the study area used various waterbird species to treat different infectious and chronic diseases like cold, cough, flu, fever, respiratory disorders, asthma, TB, gastric ulcers, kidney stones, male impotency, obesity, paralysis, piles, cancer, arthritis, body pain, and weakness (Fig. 9). Other studies also reported that waterbird species were used to treat respiratory disorders (asthma, pneumonia, and cough), cardiovascular disorders, and skin infections [11, 91]. Moreover, waterfowl are a major part of the diet of indigenous people at high latitudes in North America [92]. The main reasons for the higher number of diseases in this remote area might be a lack of exercise, nutritional deficiency, and a polluted environment. However, THPs are more familiar with the use of parts and products of waterbird species for the treatment of various human ailments. Some of the local inhabitants hunted bird species and sold them in local markets or to hakeems, normally at low prices. THPs use the products or parts of waterbird species in suitable seasons or at specific times. Many THPs kept written notes for medicinal preparations but usually did not share such information publicly, so as not to increase the number of practitioners.

The separating line between the popular and unpopular groups falls at the point where the average number of uses per species ceases to increase with a further increase in the number of informants (Fig. 8). Based on the RPL index analysis, we found certain popular species that are utilized to cure a greater number of diseases in the study region, i.e., mallard, gadwall, green-winged teal, garganey, Eurasian wigeon, and Eurasian coot. The high popularity of these plant species might be attributed to their high efficacy which specifies their use as therapeutic medicine. Moreover, 100% FL was noted for four waterbird species, i.e., Charadrius mongolus (cold), Gallicrex cinerea (asthma), Anas platyrhynchos (cancer), and Esacus recurvirostris (body weakness). Mainly, waterbird species with 100% FL are utilized more in the traditional healthcare system of the study area [93, 94]. The high familiarity of waterbird species might be recognized by their wider distribution, diversity, and familiarity with the people of the study area, which specifies their use in ethno-pharmacological applications. These findings are supported by other ethnobiologists [56, 61]. Waterbird species with high RPL and FL values showed the importance of these species and are proposed for further pharmacological evaluation to analyze their therapeutic potential and for screening of unknown bioactive chemicals.

Critical analysis of medicinal waterbird species

The ethno-pharmacological data were calculated using PCA, which assigned the six variables for the ordination of designs in terms of MD, FD, SPS, HN, EX, and OR. It is clear from our results that local residents used the waterbird species more for medicinal and food purposes (Fig. 5). Previous results showed that wild birds are used as a source of food in many areas of the world, i.e., India [95, 96], Pakistan [11, 28], Philippines [97], and Brazil [91, 98]. However, statistical analysis is highly valuable in ethnobiological studies because it provides important information for pharmacological and clinical studies.

Waterbird species are used to treat different human ailments, which reflects that the people of Eastern KPK have more information to control the healthcare system and that traditional pharmacological applications have not been eliminated from the culture. The high usage of waterbird species may be due to the abundance and widespread dispersion of these species in the study area. Furthermore, traditional medicine for curing various ailments may also result in high RFC, RPL, and FL [99,100,101]. In this study, mallard was the most popular species in Eastern KPK with high FL (100%), which show the abundance and wider use of this species' by-products for cancer treatment (Table 2). In their study, Altaf, Umair [12] reported that mallard was used to treat cancer by the local communities of Punjab, Pakistan.

Most wild duck by-products, such as liver, gizzard, heart, and spleen (Fig. 10), are rich sources of essential nutrients and polyunsaturated fatty acids [102]. In comparison with other tissues, El-Sayed, Farag [103] found that the liver and gizzard are the best sources of high-quality protein. A high-protein diet has been demonstrated to boost metabolism, control appetite, and enhance muscle growth and preservation during weight reduction [104, 105]. Despite this, it is also high in minerals and vitamins, including copper, vitamin A, and several essential amino acids [106]. Trace elements are also known as microelements and are essential for bone formation, hormone production, and heart rate regulation [107, 108]. Furthermore, all of the by-products, particularly the liver, had larger quantities of microelements (e.g., Cu, Fe, Mn, and Zn) than muscle tissues [109]. Copper (Cu) is an essential microelement, and the human body requires only a minimal amount [108]. According to Garber [110], copper has higher antioxidant properties and can help to fight cancer.

Fig. 10figure 10

Graphical representation of the medicinal uses of mallard (Anas platyrhynchos) in Eastern KPK, Pakistan

Liver and fat are used to treat swelling wounds and pneumonia [66], influenza, bronchitis, asthma [111], blisters, and skin problems [112, 113]. Duck tongue meat is said to be especially beneficial to people recovering from illness and to alleviate body sickness during pregnancy. In another study, duck bile is used to treat cancer, traumatic hemorrhage, and dyspepsia [114, 115]. Likewise, duck gizzard peptides can provide a plentiful source of natural antioxidants for applications in the food industry [116]. The gizzard is a low-fat, high-protein organ that has great natural levels of iron and zinc [103]. These nutrients support a healthy immune system, promote wound healing, and aid in cell division. The dark-colored large duck hearts are very low in calories, and in terms of their nutritional value, they are as good as the hearts of other animals [117]. Both the heart and spleen are rich in protein and saturated fatty acids, which are helpful in improving blood circulation and curing cancer, cough, cold, and rheumatoid arthritis [118]. Duck feet are a natural source of glucosamine, chondroitin, and collagen [119], which provide joint health by producing joint fluid, reducing the risk of brittle bones, improving mobility, and helping maintain healthy teeth and gums.

Bio-conservation or sustainable use of the reported species

For the design and integration of biodiversity conservation plans, understanding the knowledge of human–animal interaction and the use of natural resources is critical [120]. However, the documentation of indigenous knowledge on animal-based medicines is very helpful in the formulations of strategies for sustainable management and conservation of bio-resources [121]. Ethno-ornithological studies, in addition to integrating biological factors and giving traditional knowledge on medicinal values of species in any region, also cover social, economic, traditional, and cultural values of animal species in human societies and thus make a significant contribution in animal conservation [26].

Use of waterbird species in traditional therapies and for cultural purpose by humans is not the only threat to bird diversity in any region. Factors also include changes in climate and various types of interactions in an ecosystem, i.e., food chain and food webs also contribute significantly to threatening waterbird population and diversity [26, 34]. Given the great need to find solutions to deal with the current crisis of biodiversity loss [122], more specifically that of bird species, it is obligatory to adopt strategies that address the problem in all its complexity. And for this, ethnozoology presents itself as an interdisciplinary tool, approaching the issue in an additional comprehensive method [123].

Novelty of the study

The current study is a collective effort that includes both documenting and cross-cultural comparisons of the reported species in order to better understand the different waterbirds usage traditions. We found a high degree of overlap in the use of specific waterbirds among ethnic groups. Because of their food value, certain species were found to be more prevalent in all cultures. Moreover, the collected data are unique because these waterbird species have no previous records. We found that all waterbird species have a 0.00 “similarity index.” Only 1 species (i.e., mallard) has a 1.00 similarity index and has been reported for ethnomedicine applications previously. In the current study, this species was used to treat cancer, cough, cold, male impotency, diabetes, BP piles, arthritis, body sickness during pregnancy, fever, heart problems, cut, wounds, eye pain, and TB, while in reported use, this species was used to cure fever, weakness, colds, BP, cancer, weight loss, eye pain [12], paralysis, weakness [64], erectile dysfunction [65], and TB [66].

留言 (0)

沒有登入
gif