Co-culture with Acinetobacter johnsonii enhances benzalkonium chloride resistance in Salmonella enterica via triggering lipid A modifications

Salmonella enterica is one of the leading causes of foodborne gastroenteritis worldwide. In the food production environment, many bacterial species co-exist on surfaces in biofilm structures, which can act as reservoirs of microbial contamination of food products. Polymicrobial biofilms have been shown to have greater tolerance to antimicrobials, such as disinfectants, however the mechanistic basis of this is poorly understood. In this study, S. enterica subsp. Liverpool was co-cultured in mixed-species biofilms with bacteria isolated from the food production environment and challenged with the cationic biocide disinfectant, benzalkonium chloride (BC). Co-culture with the common environmental bacterium Acinetobacter johnsonii resulted in >200-fold higher resistance of S. Liverpool to BC, compared to mono-culture biofilms. The transcriptional response of S. enterica to biofilm co-culture was determined using a dual RNA-seq strategy. Genes controlled by the PhoPQ and PmrAB two-component systems, involved in lipid A modification and associated with cationic antimicrobial peptide resistance (CAMP) of S. Liverpool, were significantly upregulated. Deletion of either the phoP or pmrA genes resulted in an increase in susceptibility to BC, suggesting that activation of their regulons during co-culture enhances BC resistance. S. Liverpool lipid A profiles changed significantly upon co-culturing, with greater incorporation of both phosphoethanolamine and palmitate, which was dependent upon activation of PhoPQ and PmrAB. We conclude that when grown in the presence of A. johnsonii, S. Liverpool increases its tolerance to cationic BC disinfection by remodelling its cell envelope including reducing the net negative charge of lipid A and increasing lipid A acyl density.

留言 (0)

沒有登入
gif