A Review of CT-Based Fracture Risk Assessment with Finite Element Modeling and Machine Learning

Schuit SCE, Van der Klift M, Weel A, De Laet C, Burger H, Seeman E, et al. Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone. 2004;34(1):195–202.

CAS  PubMed  Article  Google Scholar 

Wainwright SA, Marshall LM, Ensrud KE, Cauley JA, Black DM, Hillier TA, Hochberg MC, Vogt MT, Orwoll ES. Hip fracture in women without osteoporosis. J Clin Endocrinol Metab. 2005;90(5):2787–93.

CAS  PubMed  Article  Google Scholar 

Kanis JA, McCloskey EV, Johansson H, Oden A, Melton LJ III, Khaltaev N. A reference standard for the description of osteoporosis. Bone. 2008;42(3):467–75.

CAS  PubMed  Article  Google Scholar 

Kanis JA, Cooper C, Rizzoli R, Reginster JY. Executive summary of the European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Calcif Tissue Int. 2019;104(3):235–8.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Cody DD, Gross GJ, Hou FJ, Spencer HJ, Goldstein SA, Fyhrie DP. Femoral strength is better predicted by finite element models than QCT and DXA. J Biomech [Internet]. 1999;32(10):1013–20. Available from: http://ac.els-cdn.com/S0021929099000998/1-s2.0-S0021929099000998-main.pdf?_tid=33b5b734-ae9a-11e5-9548-00000aacb35f&acdnat=1451441482_79796d7ca1594b74b3e1d6a2e4a2539b

Crawford RP, Cann CE, Keaveny TM. Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone. 2003;33(4):744–50.

PubMed  Article  Google Scholar 

Kopperdahl DL, Aspelund T, Hoffmann PF, Sigurdsson S, Siggeirsdottir K, Harris TB, et al. Assessment of incident spine and hip fractures in women and men using finite element analysis of CT scans. J Bone Miner Res [Internet]. 2014;29(3):570–80. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23956027

Adams AL, Fischer H, Kopperdahl DL, Lee DC, Black DM, Bouxsein ML, et al. Osteoporosis and hip fracture risk from routine computed tomography scans: the fracture, osteoporosis, and CT utilization study (FOCUS). J Bone Miner Res. 2018;33(7):1291–301. Largest cohort study for fracture risk assessment with finite element-derived bone strength.

Fleps I, Fung A, Guy P, Ferguson SJ, Helgason B, Cripton PA. Subject-specific ex vivo simulations for hip fracture risk assessment in sideways falls. Bone. 2019;125:36–45.

PubMed  Article  Google Scholar 

Hayes WC, Myers ER, Robinovitch SN, Van Den Kroonenberg A, Courtney AC, McMahon TA. Etiology and prevention of age-related hip fractures. Bone. 1996;18(1 Suppl):77S-86S.

Mokhtarzadeh H, Anderson DE, Allaire BT, Bouxsein ML. Patterns of load-to-strength ratios along the spine in a population-based cohort to evaluate the contribution of spinal loading to vertebral fractures. J Bone Miner Res. 2021;36(4):704–11.

CAS  PubMed  Article  Google Scholar 

LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44.

CAS  PubMed  Article  Google Scholar 

Chao Y-S, Sinclair A, Morrison A, Hafizi D, Pyke L. The Canadian Medical Imaging Inventory 2019–2020. 2021.

Book  Google Scholar 

Fleps I, Pálsson H, Baker A, Enns-Bray W, Bahaloo H, Danner M, et al. Finite element derived femoral strength is a better predictor of hip fracture risk than aBMD in the AGES Reykjavik study cohort. Bone. 2022;154:116219. Large cohort study that found improved fracture risk assessment compared to CT-based aBMD and compares different material implementations.

Qasim M, Farinella G, Zhang J, Li X, Yang L, Eastell R, Viceconti M. Patient-specific finite element estimated femur strength as a predictor of the risk of hip fracture: the effect of methodological determinants. Osteoporos Int. 2016;27(9):2815–22.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Falcinelli C, Schileo E, Balistreri L, Baruffaldi F, Bordini B, Viceconti M, Albisinni U, Ceccarelli F, Milandri L, Toni A, Taddei F Multiple loading conditions analysis can improve the association between finite element bone strength estimates and proximal femur fractures: A preliminary study in elderly women. Bone [Internet]. 2014;67:71–80. Available from: http://linkinghub.elsevier.com/retrieve/pii/S8756328214002476

Johannesdottir F, Allaire B, Kopperdahl DL, Keaveny TM, Sigurdsson S, Bredella MA, et al. Bone density and strength from thoracic and lumbar CT scans both predict incident vertebral fractures independently of fracture location. Osteoporos Int. 2021;32(2):261–9. Large cohort study on assessement of vertebral fracture risk based on CT-derived finite element models.

Dieckmeyer M, Rayudu NM, Yeung LY, Löffler M, Sekuboyina A, Burian E, Sollmann N, Kirschke JS, Baum T, Subburaj K. Prediction of incident vertebral fractures in routine MDCT: Comparison of global texture features, 3D finite element parameters and volumetric BMD. Eur J Radiol. 2021;141:109827.

PubMed  Article  Google Scholar 

Allaire BT, Lu D, Johannesdottir F, Kopperdahl D, Keaveny TM, Jarraya M, Guermazi A, Bredella MA, Samelson EJ, Kiel DP, Anderson DE, Demissie S, Bouxsein ML. Prediction of incident vertebral fracture using CT-based finite element analysis. Osteoporos Int. 2019;30(2):323–31.

CAS  PubMed  Article  Google Scholar 

Services USD of H and H, Administration F and D. Reporting of Computational Modeling Studies in Medical Device Submissions [Internet]. 2016. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/reporting-computational-modeling-studies-medical-device-submissions

Center for Devices and Radiological. Assessing Credibility of Computational Modeling through Verification and Validation: Application to Medical Devices [Internet]. 2018. Available from: https://www.asme.org/codes-standards/find-codes-standards/v-v-40-assessing-credibility-computational-modeling-verification-validation-application-medical-devices

Lessmann N, Van Ginneken B, De Jong PA, Išgum I. Iterative fully convolutional neural networks for automatic vertebra segmentation and identification. Med Image Anal. 2019;53:142–55.

PubMed  Article  Google Scholar 

Müller D, Kramer F. MIScnn: a framework for medical image segmentation with convolutional neural networks and deep learning. BMC Med Imaging. 2021;21(1):1–11.

Article  Google Scholar 

Sekuboyina A, Husseini ME, Bayat A, Löffler M, Liebl H, Li H, et al. VerSe: a vertebrae labelling and segmentation benchmark for multi-detector CT images. Med Image Anal. 2021;73:102166. Comparison of state-of-the-art deep learning frameworks for image segmetation and labelling on a diverse dataset of the spine.

Kim JJ, Nam J, Jang IG. Fully automated segmentation of a hip joint using the patient-specific optimal thresholding and watershed algorithm. Comput Methods Programs Biomed. 2018;154:161–71.

PubMed  Article  Google Scholar 

Väänänen SP, Grassi L, Venäläinen MS, Matikka H, Zheng Y, Jurvelin JS, Isaksson H. Automated segmentation of cortical and trabecular bone to generate finite element models for femoral bone mechanics. Med Eng Phys. 2019;70:19–28.

PubMed  Article  Google Scholar 

Hemke R, Buckless CG, Tsao A, Wang B, Torriani M. Deep learning for automated segmentation of pelvic muscles, fat, and bone from CT studies for body composition assessment. Skeletal Radiol. 2020;49(3):387–95. Study demonstrating muti-label segmentation with high accuracy for tissues in the pelvic region.

Balagopal A, Kazemifar S, Nguyen D, Lin M-H, Hannan R, Owrangi A, Jiang S. Fully automated organ segmentation in male pelvic CT images. Phys Med Biol. 2018;63(24):245015.

PubMed  Article  Google Scholar 

Bjornsson PA, Baker A, Fleps I, Pauchard Y, Palsson H, Ferguson SJ, Sigurdsson S, Gudnason V, Helgason B, Ellingsen LM. Fast and robust femur segmentation from computed tomography images for patient-specific hip fracture risk screening. Computer Methods in Biomechanics and Biomedical Engineering: Imaging Vis. 2022:1–3. https://doi.org/10.1080/21681163.2022.2068160

Pauchard Y, Fitze T, Browarnik D, Eskandari A, Pauchard I, Enns-Bray W, Pálsson H, Sigurdsson S, Ferguson SJ, Harris TB, Gudnason V, Helgason B. Interactive graph-cut segmentation for fast creation of finite element models from clinical ct data for hip fracture prediction. Comput Methods Biomech Biomed Engin. 2016;19(16):1693–703.

PubMed  PubMed Central  Article  Google Scholar 

Winsor C, Li X, Qasim M, Henak CR, Pickhardt PJ, Ploeg H, et al. Evaluation of patient tissue selection methods for deriving equivalent density calibration for femoral bone quantitative CT analyses. Bone. 2021;143:115759. Study investigating the influence of different tissue combinations for phantomless calibration applied to hip BMD and finite element derived bone strength.

Lee DC, Hoffmann PF, Kopperdahl DL, Keaveny TM. Phantomless calibration of CT scans for measurement of BMD and bone strength—inter-operator reanalysis precision. Bone. 2017;103:325–33. Study investating the inter-operator variability of phantomless calibration at the spine and hip.

Bartenschlager S, Dankerl P, Chaudry O, Uder M, Engelke K. BMD accuracy errors specific to phantomless calibration of CT scans of the lumbar spine. Bone. 2022;157:116304. Study analysing the expected influence of tissue variability on BMD accuracty with phantomless calibration.

Michalski AS, Besler BA, Michalak GJ, Boyd SK. CT-based internal density calibration for opportunistic skeletal assessment using abdominal CT scans. Med Eng Phys. 2020;78:55–63. Study comparing in-line, asynchronous and phantomless calibration for different applied to hip BMD and finite element derived bone strength.

Prado M, Khosla S, Chaput C, Giambini H. Opportunistic application of phantom-less calibration methods for fracture risk prediction using QCT/FEA. Eur Radiol. 2021;31(12):9428–35. Study investigating the influence of different tissue combinations for phantomless calibration applied to vertebral BMD and finite element derived bone strength.

Duchemin L, Mitton D, Jolivet E, Bousson V, Laredo JD, Skalli W. An anatomical subject-specific FE-model for hip fracture load prediction. Comput Methods Biomech Biomed Engin. 2008;11(2):105–11.

CAS  PubMed  Article  Google Scholar 

Bessho M, Ohnishi I, Matsuyama J, Matsumoto T, Imai K, Nakamura K. Prediction of strength and strain of the proximal femur by a CT-based finite element method. J Biomech [Internet]. 2006/10/13. 2007;40(8):1745–53. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17034798

Ariza O, Gilchrist S, Widmer RP, Guy P, Ferguson SJ, Cripton PA, et al. Comparison of explicit finite element and mechanical simulation of the proximal femur during dynamic drop-tower testing. J Biomech [Internet]. 2015;48(2):224–32. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25527888

Dragomir-Daescu D, Op Den Buijs J, McEligot S, Dai Y, Entwistle RC, Salas C, et al. Robust QCT/FEA models of proximal femur stiffness and fracture load during a sideways fall on the hip. Ann Biomed Eng. 2011;39(2):742–755.

Melenk JM, Babuška I. The partition of unity finite element method: basic theory and applications. Comput Methods Appl Mech Eng. 1996;139(1–4):289–314.

Article  Google Scholar 

Miehe C, Welschinger F, Hofacker M. Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations. Int J Numer Methods Eng. 2010;83(10):1273–311.

Article  Google Scholar 

Shen R, Waisman H, Yosibash Z, Dahan G. A novel phase field method for modeling the fracture of long bones. Int j numer method biomed eng. 2019;35(8):e3211. First implementation of fracture predictions with the phase field methods in CT-based heterogeneous whole bone simulations.

Gustafsson A, Tognini M, Bengtsson F, Gasser TC, Isaksson H, Grassi L. Subject-specific FE models of the human femur predict fracture path and bone strength under single-leg-stance loading. J Mech Behav Biomed Mater. 2021;113:104118. Implementation of XFEM into CT-based heteogeneous whole bone simulations with promising results for stance loading.

Giambini H, Qin X, Dragomir-Daescu D, An K-N, Nassr A. Specimen-specific vertebral fracture modeling: a feasibility study using the extended finite element method. Med Biol Eng Comput. 2016;54(4):583–93.

PubMed  Article  Google Scholar 

Maghami E, Josephson TO, Moore JP, Rezaee T, Freeman TA, Karim L, et al. Fracture behavior of human cortical bone: Role of advanced glycation end-products and microstructural features. J Biomech. 2021;125:110600.

PubMed  Article  Google Scholar 

Wu C, Fang J, Zhang Z, Entezari A, Sun G, Swain MV, Li Q. Fracture modeling of brittle biomaterials by the phase-field method. Eng Fract Mech. 2020;224:106752.

Article  Google Scholar 

Navidtehrani Y, Betegón C, Martínez-Pañeda E. A simple and robust Abaqus implementation of the phase field fracture method. Appl Eng Sci. 2021;6:100050.

Google Scholar 

Molnár G, Gravouil A. 2D and 3D Abaqus implementation of a robust staggered phase-field solution for modeling brittle fracture. Finite Elem Anal Des. 2017;130:27–38. Study describing an open source Abaqus implementation of the phase field methods in a user defined element formuation.

Yosibash Z, Trabelsi N, Hellmich C. Subject-specific p-FE analysis of the proximal femur utilizing micromechanics-based material properties. Int J Multiscale Comput Eng. 2008;6(5):483–98.

Article  Google Scholar 

Treece GM, Gee AH. Independent measurement of femoral cortical thickness and cortical bone density using clinical CT. Med Image Anal. 2015;20(1):249–64.

CAS  PubMed  Article  Google Scholar 

Chandran V, Maquer G, Gerig T, Zysset P, Reyes M. Supervised learning for bone shape and cortical thickness estimation from CT images for finite element analysis. Med Image Anal. 2019;52:42–55.

PubMed  Article  Google Scholar 

Fleps I, Vuille M, Melnyk A, Ferguson SJ, Guy P, Helgason B, Cripton PA. A novel sideways fall simulator to study hip fractures ex vivo. PLoS One. 2018;13(7):e0201096.

PubMed  PubMed Central  Article  Google Scholar 

Fleps I, Guy P, Ferguson SJ, Cripton PA, Helgason B. Explicit finite element models accurately predict subject-specific and velocity-dependent kinetics of sideways fall impact. J Bone Miner Res. 2019;34(10):1837–50. Validation study for finite element models that combine loading due to a fall with fracture predictions.

Fleps I, Enns-Bray WS, Guy P, Ferguson SJ, Cripton PA, Helgason B. On the internal reaction forces, energy absorption, and fracture in the hip during simulated sideways fall impact. PLoS One. 2018;13(8).

Enns-Bray WS, Bahaloo H, Fleps I, Pauchard Y, Taghizadeh E, Sigurdsson S, et al. Biofidelic finite element models for accurately classifying hip fracture in a retrospective clinical study of elderly women from the AGES Reykjavik cohort. Bone. 2019;120. Study that applies an impact model of the body for a sideways fall to a clinical cohort showing that fracture risk assessment for fallers could potentially be improved by incluing loading estimates into the finite element methodology.

Galliker ES, Laing AC, Ferguson SJ, Helgason B, Fleps I. The influence of fall direction and hip protector on fracture risk: FE model predictions driven by experimental data. Ann Biomed Eng. 2022;50:1–13.

Article  Google Scholar 

Fung A, Fleps I, Cripton PA, Guy P, Ferguson SJ, Helgason B. Prophylactic augmentation implants in the proximal femur for hip fracture prevention: An in silico investigation of simulated sideways fall impacts. J Mech Behav Biomed Mater. 2022;126:104957.

CAS  PubMed  Article  Google Scholar 

Bhattacharya P, Altai Z, Qasim M, Viceconti M. A multiscale model to predict current absolute risk of femoral fracture in a postmenopausal population. Biomech Model Mechanobiol. 2018;18:1–18.

Google Scholar 

Anitha DP, Baum T, Kirschke JS, Subburaj K. Effect of the intervertebral disc on vertebral bone strength prediction: A finite-element study. Spine J. 2020;20(4):665–71. Study that demonstrates improved vertebral strength prediction when considering loading through the intervertebral disc compared to uniform displacement loading.

Hussein AI, Louzeiro DT, Unnikrishnan GU, Morgan EF. Differences in trabecular microarchitecture and simplified boundary conditions limit the accuracy of quantitative computed tomography-based finite element models of vertebral failure. J Biomech Eng. 2018;140(2). The study highlight the imprtance of loading assumptions for the prediction of vertebral deformations during fracture with finite element models.

Carberry GA, Pooler BD, Binkley N, Lauder TB, Bruce RJ, Pickhardt PJ. Unreported vertebral body compression fractures at abdominal multidetector CT. Radiology. 2013;268(1):120–6.

留言 (0)

沒有登入
gif