DNA methylation analysis of normal colon organoids from familial adenomatous polyposis patients reveals novel insight into colon cancer development

Groden J, Thliveris A, Samowitz W, Carlson M, Gelbert L, Albertsen H, et al. Identification and characterization of the familial adenomatous polyposis coli gene. Cell. 1991;66(3):589–600.

CAS  PubMed  Article  Google Scholar 

Stec R, Plawski A, Synowiec A, Maczewski M, Szczylik C. Colorectal cancer in the course of familial adenomatous polyposis syndrome (“de novo” pathogenic mutation of APC gene): case report, review of the literature and genetic commentary. Arch Med Sci. 2010;6(2):283–7.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Zhang S, Qin H, Lv W, Luo S, Wang J, Fu C, et al. Novel and reported APC germline mutations in Chinese patients with familial adenomatous polyposis. Gene. 2016;577(2):187–92.

CAS  PubMed  Article  Google Scholar 

Zhang L, Shay JW. Multiple roles of APC and its therapeutic implications in colorectal cancer. J Natl Cancer Inst. 2017. https://doi.org/10.1093/jnci/djw332.

Article  PubMed  PubMed Central  Google Scholar 

Yang X, Zhong J, Zhang Q, Feng L, Zheng Z, Zhang J, et al. Advances and insights of APC-asef inhibitors for metastatic colorectal cancer therapy. Front Mol Biosci. 2021;8:662579.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Stefanski CD, Prosperi JR. Wnt-independent and Wnt-dependent effects of APC loss on the chemotherapeutic response. Int J Mol Sci. 2020;21(21):7844.

CAS  PubMed Central  Article  Google Scholar 

Zeineldin M, Neufeld KL. More than two decades of Apc modeling in rodents. Biochim Biophys Acta. 2013;1836(1):80–9.

CAS  PubMed  PubMed Central  Google Scholar 

Zeineldin M, Neufeld KL. Understanding phenotypic variation in rodent models with germline Apc mutations. Cancer Res. 2013;73(8):2389–99.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hinoi T, Akyol A, Theisen BK, Ferguson DO, Greenson JK, Williams BO, et al. Mouse model of colonic adenoma-carcinoma progression based on somatic Apc inactivation. Cancer Res. 2007;67(20):9721–30.

CAS  PubMed  Article  Google Scholar 

Xue Y, Johnson R, Desmet M, Snyder PW, Fleet JC. Generation of a transgenic mouse for colorectal cancer research with intestinal cre expression limited to the large intestine. Mol Cancer Res. 2010;8(8):1095–104.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Seidlitz T, Stange DE. Gastrointestinal cancer organoids-applications in basic and translational cancer research. Exp Mol Med. 2021;53(10):1459–70.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Sato T, Stange DE, Ferrante M, Vries RG, Van Es JH, Van den Brink S, et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology. 2011;141(5):1762–72.

CAS  PubMed  Article  Google Scholar 

Devall M, Dampier CH, Eaton S, Ali MW, Díez-Obrero V, Moratalla-Navarro F, et al. Novel insights into the molecular mechanisms underlying risk of colorectal cancer from smoking and red/processed meat carcinogens by modeling exposure in normal colon organoids. Oncotarget. 2021;12(19):1863.

PubMed  PubMed Central  Article  Google Scholar 

Devall M, Jennelle LT, Bryant J, Bien S, Peters U, Powell S, et al. Modeling the effect of prolonged ethanol exposure on global gene expression and chromatin accessibility in normal 3D colon organoids. PLoS ONE. 2020;15(1):e0227116.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Devall M, Plummer SJ, Bryant J, Jennelle LT, Eaton S, Dampier CH, et al. Ethanol exposure drives colon location specific cell composition changes in a normal colon crypt 3D organoid model. Sci Rep. 2021;11(1):432.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Devall MAM, Drew DA, Dampier CH, Plummer SJ, Eaton S, Bryant J, et al. Transcriptome-wide in vitro effects of aspirin on patient-derived normal colon organoids. Cancer Prev Res (Phila). 2021;14:1089–100.

CAS  PubMed Central  Article  Google Scholar 

Abramowicz M, Zuccotti G, Pflomm JM. A stool DNA test (Cologuard) for colorectal cancer screening. JAMA. 2014;312(23):2566.

Article  Google Scholar 

Baharudin R, Ishak M, Muhamad Yusof A, Saidin S, Syafruddin SE, Wan Mohamad Nazarie WF, et al. Epigenome-wide DNA methylation profiling in colorectal cancer and normal adjacent colon using infinium human methylation 450K. Diagnostics (Basel). 2022;12(1):198.

CAS  Article  Google Scholar 

Kraiczy J, Nayak KM, Howell KJ, Ross A, Forbester J, Salvestrini C, et al. DNA methylation defines regional identity of human intestinal epithelial organoids and undergoes dynamic changes during development. Gut. 2019;68(1):49–61.

CAS  PubMed  Article  Google Scholar 

Middendorp S, Schneeberger K, Wiegerinck CL, Mokry M, Akkerman RD, van Wijngaarden S, et al. Adult stem cells in the small intestine are intrinsically programmed with their location-specific function. Stem Cells. 2014;32(5):1083–91.

CAS  PubMed  Article  Google Scholar 

Kraiczy J, Ross ADB, Forbester JL, Dougan G, Vallier L, Zilbauer M. Genome-wide epigenetic and transcriptomic characterization of human-induced pluripotent stem cell-derived intestinal epithelial organoids. Cell Mol Gastroenterol Hepatol. 2019;7(2):285–8.

PubMed  Article  Google Scholar 

Lewis SK, Nachun D, Martin MG, Horvath S, Coppola G, Jones DL. DNA methylation analysis validates organoids as a viable model for studying human intestinal aging. Cell Mol Gastroenterol Hepatol. 2020;9(3):527–41.

PubMed  Article  Google Scholar 

Cancer Genome Atlas N. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487(7407):330–7.

Article  CAS  Google Scholar 

Barrow TM, Klett H, Toth R, Bohm J, Gigic B, Habermann N, et al. Smoking is associated with hypermethylation of the APC 1A promoter in colorectal cancer: the ColoCare study. J Pathol. 2017;243(3):366–75.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Teschendorff AE. A comparison of epigenetic mitotic-like clocks for cancer risk prediction. Genome Med. 2020;12(1):56.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14(10):R115.

PubMed  PubMed Central  Article  Google Scholar 

Mills SJ, Mathers JC, Chapman PD, Burn J, Gunn A. Colonic crypt cell proliferation state assessed by whole crypt microdissection in sporadic neoplasia and familial adenomatous polyposis. Gut. 2001;48(1):41–6.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Peters TJ, Buckley MJ, Statham AL, Pidsley R, Samaras K, Lord RV, et al. De novo identification of differentially methylated regions in the human genome. Epigenetics Chromatin. 2015;8:6.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Liu Y, Corcoran M, Rasool O, Ivanova G, Ibbotson R, Grander D, et al. Cloning of two candidate tumor suppressor genes within a 10 kb region on chromosome 13q14, frequently deleted in chronic lymphocytic leukemia. Oncogene. 1997;15(20):2463–73.

CAS  PubMed  Article  Google Scholar 

Huyghe JR, Bien SA, Harrison TA, Kang HM, Chen S, Schmit SL, et al. Discovery of common and rare genetic risk variants for colorectal cancer. Nat Genet. 2019;51(1):76–87.

CAS  PubMed  Article  Google Scholar 

Tang Z, Kang B, Li C, Chen T, Zhang Z. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019;47(W1):W556–60.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Consortium GT. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science. 2020;369(6509):1318–30.

Article  CAS  Google Scholar 

Takane K, Fukuyo M, Matsusaka K, Ota S, Rahmutulla B, Matsushita K, et al. The frequency of promoter DNA hypermethylation is decreased in colorectal neoplasms of familial adenomatous polyposis. Oncotarget. 2018;9(66):32653–66.

PubMed  PubMed Central  Article  Google Scholar 

Barker N, Ridgway RA, van Es JH, van de Wetering M, Begthel H, van den Born M, et al. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature. 2009;457(7229):608–11.

CAS  PubMed  Article  Google Scholar 

Bruschi M, Garnier L, Cleroux E, Giordano A, Dumas M, Bardet AF, et al. Loss of Apc rapidly impairs DNA methylation programs and cell fate decisions in Lgr5(+) intestinal stem cells. Cancer Res. 2020;80(11):2101–13.

CAS  PubMed  Article  Google Scholar 

Erdmann A, Halby L, Fahy J, Arimondo PB. Targeting DNA methylation with small molecules: what’s next? J Med Chem. 2015;58(6):2569–83.

CAS  PubMed  Article  Google Scholar 

Sapozhnikov DM, Szyf M. Unraveling the functional role of DNA demethylation at specific promoters by targeted steric blockage of DNA methyltransferase with CRISPR/dCas9. Nat Commun. 2021;12(1):5711.

留言 (0)

沒有登入
gif