Neonatal rat ventricular myocytes interfacing conductive polymers and carbon nanotubes

Alegret N, Dominguez-Alfaro A, González-Domínguez JM, Arnaiz B, Cossío U, Bosi S, Vázquez E, Ramos-Cabrer P, Mecerreyes D, Prato M. Three-dimensional conductive scaffolds as neural prostheses based on carbon nanotubes and polypyrrole. ACS Appl Mater Interfaces. 2018;10:43904–14. https://doi.org/10.1021/acsami.8b16462.

CAS  Article  PubMed  Google Scholar 

Baei P, Hosseini M, Baharvand H, Pahlavan S. Electrically conductive materials for in vitro cardiac microtissue engineering. J Biomed Mater Res, Part A. 2020;108:1203–13. https://doi.org/10.1002/jbm.a.36894.

CAS  Article  Google Scholar 

Ballerini L. Improving cardiac myocytes performance by carbon nanotubes platforms †. 2013; 4: 1-6. https://doi.org/10.3389/fphys.2013.00239

Cahill TJ, Ashrafian H, Watkins H. Genetic cardiomyopathies causing heart failure. Circ Res. 2013;113:660–75. https://doi.org/10.1161/CIRCRESAHA.113.300282.

CAS  Article  PubMed  Google Scholar 

Cao G, Cai S, Chen Y, Zhou D, Zhang H, Tian Y. Facile synthesis of highly conductive and dispersible PEDOT particles. Polymer. 2022;252:124952. https://doi.org/10.1016/j.polymer.2022.124952.

CAS  Article  Google Scholar 

Cao G, Cai S, Zhang H, Chen Y, Tian Y. High-performance conductive polymer composites by incorporation of polyaniline-wrapped halloysite nanotubes and silver microflakes. ACS Appl Polym Mater. 2022;4:3352–60. https://doi.org/10.1021/acsapm.1c01929.

CAS  Article  Google Scholar 

Diao Y, Jung S, Kouhnavard M, Woon R, Yang H, Biswas P, D’Arcy JM. Single PEDOT catalyst boosts CO2 photoreduction efficiency. ACS Cent Sci. 2021;7:1668–75. https://doi.org/10.1021/acscentsci.1c00712.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Dominguez-Alfaro A, Alegret N, Arnaiz B, González-Domínguez JM, Martin-Pacheco A, Cossío U, Porcarelli L, Bosi S, Vázquez E, Mecerreyes D, Prato M. Tailored methodology based on vapor phase polymerization to manufacture PEDOT/CNT scaffolds for tissue engineering. ACS Biomater Sci Eng. 2020;6:1269–78. https://doi.org/10.1021/acsbiomaterials.9b01316.

CAS  Article  PubMed  Google Scholar 

Dominguez-Alfaro A, Alegret N, Arnaiz B, Salsamendi M, Mecerreyes D, Prato M. Toward spontaneous neuronal differentiation of SH-SY5Y cells using novel three-dimensional electropolymerized conductive scaffolds. ACS Appl Mater Interfaces. 2020;12:57330–42. https://doi.org/10.1021/acsami.0c16645.

CAS  Article  PubMed  Google Scholar 

Dominguez-Alfaro A, Gabirondo E, Alegret N, De León-Almazán CM, Hernandez R, Vallejo-Illarramendi A, Prato M, Mecerreyes D. 3D printable conducting and biocompatible PEDOT-graft-PLA copolymers by direct ink writing. Macromol Rapid Commun. 2021;42:2100100. https://doi.org/10.1002/marc.202100100.

CAS  Article  Google Scholar 

Dvir T, Timko BP, Kohane DS, Langer R. Nanotechnological strategies for engineering complex tissues. Nat Nanotechnol. 2011;6:13–22. https://doi.org/10.1038/nnano.2010.246.

CAS  Article  PubMed  Google Scholar 

Fabbro A, Bosi S, Ballerini L, Prato M. Carbon nanotubes: artificial nanomaterials to engineer single neurons and neuronal networks. ACS Chem Neurosci. 2012;3:611–8. https://doi.org/10.1021/cn300048q.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Fabbro A, Sucapane A, Toma FM, Calura E, Rizzetto L, Carrieri C, Roncaglia P, Martinelli V, Scaini D, Masten L, Turco A, Gustincich S, Prato M, Ballerini L. Adhesion to carbon nanotube conductive scaffolds forces action-potential appearance in immature rat spinal neurons. PLoS ONE. 2013;8:1–14. https://doi.org/10.1371/journal.pone.0073621.

CAS  Article  Google Scholar 

Garma LD, Ferrari LM, Scognamiglio P, Greco F, Santoro F. Inkjet-printed PEDOT:PSS multi-electrode arrays for low-cost in vitro electrophysiology. Lab Chip. 2019;19:3776–86. https://doi.org/10.1039/C9LC00636B.

CAS  Article  PubMed  Google Scholar 

Jin L, Wang T, Feng ZQ, Zhu M, Leach MK, Naim YI, Jiang Q. Fabrication and characterization of a novel fluffy polypyrrole fibrous scaffold designed for 3D cell culture. J Mater Chem. 2012;22:18321–6. https://doi.org/10.1039/c2jm32165c.

CAS  Article  Google Scholar 

Karbassi E, Fenix A, Marchiano S, Muraoka N, Nakamura K, Yang X, Murry CE. Cardiomyocyte maturation: advances in knowledge and implications for regenerative medicine. Nat Rev Cardiol. 2020;17:341–59. https://doi.org/10.1038/s41569-019-0331-x.

Article  PubMed  PubMed Central  Google Scholar 

Kim S-M, Kim N, Kim Y, Baik M-S, Yoo M, Kim D, Lee W-J, Kang D-H, Kim S, Lee K, Yoon M-H. High-performance, polymer-based direct cellular interfaces for electrical stimulation and recording. NPG Asia Materials. 2018;10:255–65. https://doi.org/10.1038/s41427-018-0014-9.

CAS  Article  Google Scholar 

Kostin S, Dammer S, Hein S, Klovekorn WP, Bauer EP, Schaper J. Connexin 43 expression and distribution in compensated and decompensated cardiac hypertrophy in patients with aortic stenosis. Cardiovasc Res. 2004;62:426–36. https://doi.org/10.1016/j.cardiores.2003.12.010.

CAS  Article  PubMed  Google Scholar 

Liang Y, Mitriashkin A, Lim TT, Goh JC-H. Conductive polypyrrole-encapsulated silk fibroin fibers for cardiac tissue engineering. Biomaterials. 2021;276:121008. https://doi.org/10.1016/j.biomaterials.2021.121008.

CAS  Article  PubMed  Google Scholar 

Malarkey EB, Fisher KA, Bekyarova E, Liu W, Haddon RC, Parpura V. Conductive single-walled carbon nanotube substrates modulate neuronal growth. Nano Lett. 2009;9:264–8. https://doi.org/10.1021/nl802855c.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Marchesan S, Ballerini L, Prato M. Nanomaterials for stimulating nerve growth. Sci (New York, NY). 2017;356:1010–1. https://doi.org/10.1126/science.aan1227.

CAS  Article  Google Scholar 

Martinelli V, Cellot G, Toma FM, Long CS, Caldwell JH, Zentilin L, Giacca M, Turco A, Prato M, Ballerini L, Mestroni L. Carbon nanotubes instruct physiological growth and functionally mature syncytia: nongenetic engineering of cardiac myocytes. ACS Nano. 2013;7:5746–56. https://doi.org/10.1021/nn4002193.

CAS  Article  PubMed  Google Scholar 

Martinelli V, Cellot G, Toma FM, Long CS, Caldwell JH, Zentilin L, Giacca M, Turco A, Prato M, Ballerini L, Mestroni L. Carbon nanotubes promote growth and spontaneous electrical activity in cultured cardiac myocytes. 2012. https://doi.org/10.1021/nl204064s.

Mawad D, Mansfield C, Lauto A, Perbellini F, Nelson GW, Tonkin J, Bello SO, Carrad DJ, Micolich AP, Mahat MM, Furman J, Payne DJ, Lyon AR, Gooding JJ, Harding SE, Terracciano CM, Stevens MM. A conducting polymer with enhanced electronic stability applied in cardiac models. Sci Adv. 2016;2. https://doi.org/10.1126/sciadv.1601007.

Pampaloni NP, Scaini D, Perissinotto F, Bosi S, Prato M, Ballerini L. Sculpting neurotransmission during synaptic development by 2D nanostructured interfaces. Nanomedicine Nanotechnol, Biol Med. 2018;14:2521–32. https://doi.org/10.1016/j.nano.2017.01.020.

CAS  Article  Google Scholar 

Parchehbaf-Kashani M, Ansari H, Mahmoudi E, Barekat M, Sepantafar M, Rajabi S, Pahlavan S. Heart repair induced by cardiac progenitor cell delivery within polypyrrole-loaded cardiogel post-ischemia. ACS Appl Bio Mater. 2021;4:4849–61. https://doi.org/10.1021/acsabm.1c00133.

CAS  Article  PubMed  Google Scholar 

Pellman J, Zhang J, Sheikh F. Myocyte-fibroblast communication in cardiac fibrosis and arrhythmias: mechanisms and model systems. J Mol Cell Cardiol. 2016;94:22–31. https://doi.org/10.1016/j.yjmcc.2016.03.005.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Peña B, Martinelli V, Jeong M, Bosi S, Lapasin R, Taylor MRG, Long CS, Shandas R, Park D, Mestroni L. Biomimetic polymers for cardiac tissue engineering. Biomacromol. 2016;17:1593–601. https://doi.org/10.1021/acs.biomac.5b01734.

CAS  Article  Google Scholar 

Peña B, Bosi S, Aguado BA, Borin D, Farnsworth NL, Dobrinskikh E, Rowland TJ, Martinelli V, Jeong M, Taylor MRGG, Long CS, Shandas R, Sbaizero O, Prato M, Anseth KS, Park D, Mestroni L. Injectable carbon nanotube-functionalized reverse thermal gel promotes cardiomyocytes survival and maturation. ACS Appl Mater Interfaces. 2017;9:31645–56. https://doi.org/10.1021/acsami.7b11438.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Place ES, Evans ND, Stevens MM. Complexity in biomaterials for tissue engineering. Nat Mater. 2009;8:457–70. https://doi.org/10.1038/nmat2441.

CAS  Article  PubMed  Google Scholar 

Roshanbinfar K, Vogt L, Greber B, Diecke S, Boccaccini AR, Scheibel T, Engel FB. Electroconductive biohybrid hydrogel for enhanced maturation and beating properties of engineered cardiac tissues. Adv Funct Mater. 2018;28:1803951. https://doi.org/10.1002/adfm.201803951.

CAS  Article  Google Scholar 

Severs NJ, Coppen SR, Dupont E, Yeh H-I, Ko Y-S, Matsushita T. Gap junction alterations in human cardiac disease. Cardiovasc Res. 2004;62:368–77. https://doi.org/10.1016/j.cardiores.2003.12.007.

CAS  Article  PubMed  Google Scholar 

Silva GA. Neuroscience nanotechnology: progress, opportunities and challenges. Nat Rev Neurosci. 2006;7:65–74. https://doi.org/10.1038/nrn1827.

CAS  Article  PubMed  Google Scholar 

Souders CA, Bowers SLK, Baudino TA. Cardiac fibroblast. Circ Res. 2009;105:1164–76. https://doi.org/10.1161/CIRCRESAHA.109.209809.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Wang C, Chai Y, Wen X, Ai Y, Zhao H, Hu W, Yang X, Ding M-Y, Shi X, Liu Q, Liang Q. Stretchable and anisotropic conductive composite hydrogel as therapeutic cardiac patches. ACS Mater Lett. 2021;3:1238–48. https://doi.org/10.1021/acsmaterialslett.1c00146.

CAS  Article  Google Scholar 

Wang H, Yang H, Woon R, Lu Y, Diao Y, D’Arcy JM. Microtubular PEDOT-coated bricks for atmospheric water harvesting. ACS Appl Mater Interfaces. 2021;13:34671–8. https://doi.org/10.1021/acsami.1c04631.

CAS  Article  PubMed  Google Scholar 

ZanjanizadehEzazi N, Ajdary R, Correia A, Mäkilä E, Salonen J, Kemell M, Hirvonen J, Rojas OJ, Ruskoaho HJ, Santos HA. Fabrication and characterization of drug-loaded conductive poly(glycerol sebacate)/nanoparticle-based composite patch for myocardial infarction applications. ACS Appl Mater Interfaces. 2020;12:6899–909. https://doi.org/10.1021/acsami.9b21066.

CAS  Article  Google Scholar 

留言 (0)

沒有登入
gif