Metabolic cross-talk within the bone marrow milieu: focus on multiple myeloma

Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):7–30.

PubMed  Article  Google Scholar 

Schey AS, Morris J, Maguire A, Dhanasiri S. Quantifying the burden of multiple myeloma across Europe. Blood. 2016;128(22):5960.

Article  Google Scholar 

Moreau P, San Miguel J, Sonneveld P, Mateos MV, Zamagni E, Avet-Loiseau H, et al. Multiple myeloma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2017;28(Suppl_4):iv52–61.

CAS  PubMed  Article  Google Scholar 

Raab MS, Podar K, Breitkreutz I, Richardson PG, Anderson KC. Multiple myeloma. Lancet. 2009;374(9686):324–39.

PubMed  Article  Google Scholar 

Caers J, Vande broek I, De Raeve H, Michaux L, Trullemans F, Schots R, et al. Multiple myeloma—an update on diagnosis and treatment. Eur J Haematol. 2008;81(5):329–43.

CAS  PubMed  Google Scholar 

Rajkumar SV. Updated diagnostic criteria and staging system for multiple myeloma. Am Soc Clin Oncol Educ Book. 2016;35:e418–23.

PubMed  Article  Google Scholar 

Landgren O, Weiss BM. Patterns of monoclonal gammopathy of undetermined significance and multiple myeloma in various ethnic/racial groups: support for genetic factors in pathogenesis. Leukemia. 2009;23(10):1691–7.

CAS  PubMed  Article  Google Scholar 

Rajkumar SV, Dimopoulos MA, Palumbo A, Blade J, Merlini G, Mateos MV, et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014;15(12):e538–48.

PubMed  Article  Google Scholar 

Rajkumar SV. Multiple myeloma: every year a new standard? Hematol Oncol. 2019;37(Suppl 1):62–5.

PubMed  PubMed Central  Article  Google Scholar 

Abdi J, Chen G, Chang H. Drug resistance in multiple myeloma: latest findings and new concepts on molecular mechanisms. Oncotarget. 2013;4(12):2186–207.

PubMed  PubMed Central  Article  Google Scholar 

Di Marzo L, Desantis V, Solimando AG, Ruggieri S, Annese T, Nico B, et al. Microenvironment drug resistance in multiple myeloma: emerging new players. Oncotarget. 2016;7(37):60698–711.

PubMed  PubMed Central  Article  Google Scholar 

Gottesman MM. Mechanisms of cancer drug resistance. Annu Rev Med. 2002;53:615–27.

CAS  PubMed  Article  Google Scholar 

Nefedova Y, Landowski TH, Dalton WS. Bone marrow stromal-derived soluble factors and direct cell contact contribute to de novo drug resistance of myeloma cells by distinct mechanisms. Leukemia. 2003;17(6):1175–82.

CAS  PubMed  Article  Google Scholar 

Kuhn DJ, Berkova Z, Jones RJ, Woessner R, Bjorklund CC, Ma W, et al. Targeting the insulin-like growth factor-1 receptor to overcome bortezomib resistance in preclinical models of multiple myeloma. Blood. 2012;120(16):3260–70.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Abraham J, Salama NN, Azab AK. The role of P-glycoprotein in drug resistance in multiple myeloma. Leuk Lymphoma. 2015;56(1):26–33.

CAS  PubMed  Article  Google Scholar 

Papadas A, Asimakopoulos F. Mechanisms of resistance in multiple myeloma. Handb Exp Pharmacol. 2017;249:251–88.

Article  CAS  Google Scholar 

Kawano Y, Moschetta M, Manier S, Glavey S, Görgün GT, Roccaro AM, et al. Targeting the bone marrow microenvironment in multiple myeloma. Immunol Rev. 2015;263(1):160–72.

PubMed  Article  Google Scholar 

Manier S, Sacco A, Leleu X, Ghobrial IM, Roccaro AM. Bone marrow microenvironment in multiple myeloma progression. J Biomed Biotechnol. 2012;2012: 157496.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Moschetta M, Kawano Y, Sacco A, Belotti A, Ribolla R, Chiarini M, et al. Bone marrow stroma and vascular contributions to myeloma bone homing. Curr Osteoporos Rep. 2017;15(5):499–506.

PubMed  Article  Google Scholar 

Reagan MR, Ghobrial IM. Multiple myeloma mesenchymal stem cells: characterization, origin, and tumor-promoting effects. Clin Cancer Res. 2012;18(2):342–9.

CAS  PubMed  Article  Google Scholar 

Hideshima T, Mitsiades C, Tonon G, Richardson PG, Anderson KC. Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets. Nat Rev Cancer. 2007;7(8):585–98.

CAS  PubMed  Article  Google Scholar 

Brown GK. Glucose transporters: structure, function and consequences of deficiency. J Inherit Metab Dis. 2000;23(3):237–46.

CAS  PubMed  Article  Google Scholar 

El Arfani C, De Veirman K, Maes K, De Bruyne E, Menu E. Metabolic features of multiple myeloma. Int J Mol Sci. 2018;19(4):1200.

PubMed Central  Article  CAS  Google Scholar 

Alfarouk KO, Verduzco D, Rauch C, Muddathir AK, Adil HH, Elhassan GO, et al. Glycolysis, tumor metabolism, cancer growth and dissemination. A new pH-based etiopathogenic perspective and therapeutic approach to an old cancer question. Oncoscience. 2014;1(12):777–802.

PubMed  PubMed Central  Article  Google Scholar 

Zheng J. Energy metabolism of cancer: glycolysis versus oxidative phosphorylation (review). Oncol Lett. 2012;4(6):1151–7.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Pfeiffer T, Schuster S, Bonhoeffer S. Cooperation and competition in the evolution of ATP-producing pathways. Science. 2001;292(5516):504–7.

CAS  PubMed  Article  Google Scholar 

Newsholme P, Procopio J, Lima MM, Pithon-Curi TC, Curi R. Glutamine and glutamate—their central role in cell metabolism and function. Cell Biochem Funct. 2003;21(1):1–9.

CAS  PubMed  Article  Google Scholar 

Choi YK, Park KG. Targeting glutamine metabolism for cancer treatment. Biomol Ther (Seoul). 2018;26(1):19–28.

CAS  Article  Google Scholar 

Chen J, Zaal EA, Berkers CR, Ruijtenbeek R, Garssen J, Redegeld FA. Omega-3 fatty acids DHA and EPA reduce bortezomib resistance in multiple myeloma cells by promoting glutathione degradation. Cells. 2021;10(9):2287.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Halama A. Metabolomics in cell culture—a strategy to study crucial metabolic pathways in cancer development and the response to treatment. Arch Biochem Biophys. 2014;564:100–9.

CAS  PubMed  Article  Google Scholar 

Moreadith RW, Lehninger AL. The pathways of glutamate and glutamine oxidation by tumor cell mitochondria. Role of mitochondrial NAD(P)+-dependent malic enzyme. J Biol Chem. 1984;259(10):6215–21.

CAS  PubMed  Article  Google Scholar 

Wellen KE, Lu C, Mancuso A, Lemons JM, Ryczko M, Dennis JW, et al. The hexosamine biosynthetic pathway couples growth factor-induced glutamine uptake to glucose metabolism. Genes Dev. 2010;24(24):2784–99.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Curthoys NP, Watford M. Regulation of glutaminase activity and glutamine metabolism. Annu Rev Nutr. 1995;15:133–59.

CAS  PubMed  Article  Google Scholar 

Brinkmann JF, Abumrad NA, Ibrahimi A, van der Vusse GJ, Glatz JF. New insights into long-chain fatty acid uptake by heart muscle: a crucial role for fatty acid translocase/CD36. Biochem J. 2002;367(Pt 3):561–70.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Masarwi M, DeSchiffart A, Ham J, Reagan MR. Multiple myeloma and fatty acid metabolism. JBMR Plus. 2019;3(3): e10173.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Xiong J. Fatty acid oxidation in cell fate determination. Trends Biochem Sci. 2018;43(11):854–7.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Yan F, Zhao H, Zeng Y. Lipidomics: a promising cancer biomarker. Clin Transl Med. 2018;7(1):21.

PubMed  PubMed Central  Article  Google Scholar 

Grunt TW. Interacting cancer machineries: cell signaling, lipid metabolism, and epigenetics. Trends Endocrinol Metab. 2018;29(2):86–98.

CAS  PubMed  Article  Google Scholar 

Beloribi-Djefaflia S, Vasseur S, Guillaumond F. Lipid metabolic reprogramming in cancer cells. Oncogenesis. 2016;5: e189.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Peck B, Schulze A. Lipid desaturation - the next step in targeting lipogenesis in cancer? FEBS J. 2016;283(15):2767–78.

CAS 

留言 (0)

沒有登入
gif