Molecular docking, synthesis, and biological evaluation of 7-azaindole-derivative (7AID) as novel anti-cancer agent and potent DDX3 inhibitor:—an in silico and in vitro approach

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality Worldwide for 36 cancers in 185 Countries. CA Cancer J Clin. 2021;71:209–49. https://doi.org/10.3322/caac.21660.

Article  PubMed  Google Scholar 

Inc IARC. India fact sheet 2020. Globocan. 2020;361:2.

Google Scholar 

GLOBOCAN Cervix uteri Source. Globocan 2020. Int Agent Res Cervic Uteri. 2020;419:1–10.

Google Scholar 

World Health Organization Breast Globocan 2020 Available online: https://gco.iarc.fr/today/data/factsheets/cancers/20-Breast-fact-sheet.pdf.

Lin TC. DDX3X multifunctionally modulates tumor progression and serves as a prognostic indicator to predict cancer outcomes. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21010281.

Article  PubMed  PubMed Central  Google Scholar 

Xie M, Vesuna F, Botlagunta M, Bol GM, Irving A, Bergman Y, Hosmane RS, Kato Y, Winnard PT, Raman V. NZ51, a ring-expanded nucleoside analog, inhibits motility and viability of breast cancer cells by targeting the RNA helicase DDX3. Oncotarget. 2015;6:29901–13. https://doi.org/10.18632/oncotarget.4898.

Article  PubMed  PubMed Central  Google Scholar 

Guo FF, Zhao RJ, Li DJ, Xu ZG, Kong LF. [Role of up-regulated DDX3 in the proliferation of human cervical cancer cells]. Zhonghua bing li xue za zhi = Chinese. J Pathol. 2021;50:119–24. https://doi.org/10.3760/cma.j.cn112151-20200519-00394.

CAS  Article  Google Scholar 

Bol GM, Xie M, Raman V. DDX3, a potential target for cancer treatment. Mol Cancer. 2015. https://doi.org/10.1186/s12943-015-0461-7.

Article  PubMed  PubMed Central  Google Scholar 

Soto-Rifo R, Ohlmann T. The role of the DEAD-box RNA helicase DDX3 in mRNA metabolism. Wiley Interdiscip Rev RNA. 2013. https://doi.org/10.1002/wrna.1165.

Article  PubMed  Google Scholar 

Umate P, Tuteja N, Tuteja R. Genome-wide comprehensive analysis of human helicases. Commun Integr Biol. 2011;4:1–20. https://doi.org/10.4161/cib.4.1.13844.

CAS  Article  Google Scholar 

Silverman E, Edwalds-Gilbert G, Lin RJ. DExD/H-box proteins and their partners: helping RNA helicases unwind. Gene. 2003;312:1–16.

CAS  Article  Google Scholar 

de la Cruz J, Iost I, Kressler D, Linder P. The p20 and Ded1 proteins have antagonistic roles in eIF4E-dependent translation in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1997. https://doi.org/10.1073/pnas.94.10.5201.

Article  PubMed  PubMed Central  Google Scholar 

Tanner NK, Linder P. DExD/H box RNA helicases: From generic motors to specific dissociation functions. Mol Cell. 2001;8:251–62.

CAS  Article  Google Scholar 

He Y, Zhang D, Yang Y, Wang X, Zhao X, Zhang P, Zhu H, Xu N, Liang S. A double-edged function of DDX3, as an oncogene or tumor suppressor, in cancer progression (Review). Oncol Rep. 2018. https://doi.org/10.3892/or.2018.6203.

Article  PubMed  PubMed Central  Google Scholar 

Rinkevich AR, B. The DDX3 subfamily of the DEAD box helicases: divergent roles as unveiled by studying different organisms and in vitro Assays. Curr Med Chem. 2007;14:2517–25.

Article  Google Scholar 

Kotov AA, Olenkina OM, Godneeva BK, Adashev VE, Olenina LV. Progress in understanding the molecular functions of DDX3Y (DBY) in male germ cell development and maintenance. Biosci Trends. 2017. https://doi.org/10.5582/bst.2016.01216.

Article  PubMed  Google Scholar 

Lai M-C, Chang W-C, Shieh S-Y, Tarn W-Y. DDX3 regulates cell growth through translational Control of cyclin E1. Mol Cell Biol. 2010. https://doi.org/10.1128/mcb.00560-10.

Article  PubMed  PubMed Central  Google Scholar 

Xie M, Vesuna F, Tantravedi S, Bol GM, Van Voss MRH, Nugent K, Malek R, Gabrielson K, Van Diest PJ, Tran PT, et al. RK-33 radiosensitizes prostate cancer cells by blocking the RNA helicase DDX3. Cancer Res. 2016. https://doi.org/10.1158/0008-5472.CAN-16-0440.

Article  PubMed  PubMed Central  Google Scholar 

López de Victoria A, Koculi E. Targeting the human DEAD-box RNA helicase, DDX3, as a novel strategy to inhibit aggressive breast cancer metastasis. Biophys J. 2015;108:225a. https://doi.org/10.1016/j.bpj.2014.11.1242.

Article  Google Scholar 

Sun M, Song L, Zhou T, Gillespie GY, Jope RS. The role of DDX3 in regulating Snail. Biochim Biophys Acta - Mol Cell Res. 2011. https://doi.org/10.1016/j.bbamcr.2011.01.003.

Article  Google Scholar 

Botlagunta M, Kollapalli B, Kakarla L, Gajarla SP, Gade SP, Dadi CL, Penumadu A, Javeed S. In vitro anti-cancer activity of doxorubicin against human RNA helicase, DDX3. Bioinformation. 2016;12:347–53. https://doi.org/10.6026/97320630012347.

Article  PubMed  PubMed Central  Google Scholar 

Bheemanapally K, Thimmaraju MK, Kasagoni S, Thatikonda P, Akula S, Kodamala KR, Kakarla L, Gummadi SB, Nemani H, Botlagunta M. In vitro anti-cancer activity of rosuvastatin and ketorolac nanoformulations against DDX3. J Young Pharm. 2017. https://doi.org/10.5530/jyp.2017.9.103.

Article  Google Scholar 

Högbom M, Collins R, van den Berg S, Jenvert RM, Karlberg T, Kotenyova T, Flores A, Hedestam GBK, Schiavone LH. Crystal Structure of conserved domains 1 and 2 of the Human DEAD-box helicase DDX3X in complex with the mononucleotide AMP. J Mol Biol. 2007. https://doi.org/10.1016/j.jmb.2007.06.050.

Article  PubMed  Google Scholar 

Samal SK, Routray S, Veeramachaneni GK, Dash R, Botlagunta M. Ketorolac salt is a newly discovered DDX3 inhibitor to treat oral cancer. Sci Rep. 2015. https://doi.org/10.1038/srep09982.

Article  PubMed  PubMed Central  Google Scholar 

Heerma van Voss MR, Vesuna F, Bol GM, Afzal J, Tantravedi S, Bergman Y, Kammers K, Lehar M, Malek R, Ballew M, et al. Targeting mitochondrial translation by inhibiting DDX3: a novel radiosensitization strategy for cancer treatment. Oncogene. 2017;37(1):63–74.

Article  Google Scholar 

Pieterse L, Legoabe LJ, Beteck RM, Ruchaud S. CHEMISTRY Synthesis and biological evaluation of selected 7-azaindole derivatives as CDK9/Cyclin T and Haspin inhibitors. Med Chem Res. 2020. https://doi.org/10.1007/s00044-020-02560-1.

Article  Google Scholar 

Pasha A, Kumbhakar DV, Doneti R, Kumar K, Dharmapuri G, Poleboyina PK, S. K H, Basavaraju P, Pasumarthi D, S. D A, et al. Inhibition of Inducible Nitric Oxide Synthase (iNOS) by Andrographolide and in Vitro Evaluation of Its Antiproliferative and Proapoptotic Effects on Cervical Cancer. Oxid Med Cell Longev. 2021. https://doi.org/10.1155/2021/6692628.

Article  PubMed  PubMed Central  Google Scholar 

Dharmapuri G, Doneti R, Philip GH, Kalle AM. Celecoxib sensitizes imatinib-resistant K562 cells to imatinib by inhibiting MRP1-5, ABCA2 and ABCG2 transporters via Wnt and Ras signaling pathways. Leuk Res. 2015. https://doi.org/10.1016/j.leukres.2015.02.013.

Article  PubMed  Google Scholar 

Bol G, Raman V, van der Groep P. Expression of the RNA helicase DDX3 and the hypoxia response in breast cancer. PLoS ONE. 2013;8: e63548. https://doi.org/10.1371/journal.pone.0063548.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Huang JS, Chao CC, Su TL, Yeh SH, Chen DS, Chen CT, Chen PJ, Jou YS. Diverse cellular transformation capability of overexpressed genes in human hepatocellular carcinoma. Biochem Biophys Res Commun. 2004;315:950–8. https://doi.org/10.1016/j.bbrc.2004.01.151.

CAS  Article  PubMed  Google Scholar 

Bol GM, Vesuna F, Xie M, Zeng J, Aziz K, Gandhi N, Levine A, Irving A, Korz D, Tantravedi S, et al. Targeting DDX 3 with a small molecule inhibitor for lung cancer therapy. EMBO Mol Med. 2015;7:648–69. https://doi.org/10.15252/emmm.201404368.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Tantravedi S, Vesuna F, Winnard PT, Martin A, Lim M, Eberhart CG, Berlinicke C, Raabe E, van Diest PJ, Raman V. Targeting DDX3 in medulloblastoma using the small molecule inhibitor RK-33. Transl Oncol. 2019;12:96–105. https://doi.org/10.1016/j.tranon.2018.09.002.

Article  PubMed  Google Scholar 

Tsai WC, Hueng DY, Lin CR, Yang TCK, Nieh S, Gao HW. Applying DDX3X biomarker to discriminate atypical from benign meningiomas in tissue microarray. Appl Immunohistochem Mol Morphol. 2018;26:263–7. https://doi.org/10.1097/PAI.0000000000000422.

CAS  Article  PubMed  Google Scholar 

Chen HH, Yu HI, Yang MH, Tarn WY. DDX3 Activates CBC-eIF3–Mediated translation of uORF-containing oncogenic mRNAs to promote metastasis in HNSCC. Cancer Res. 2018;78:4512–23. https://doi.org/10.1158/0008-5472.CAN-18-0282.

CAS  Article  PubMed  Google Scholar 

Heerma van Voss MR, van Kempen PMW, Noorlag R, van Diest PJ, Willems SM, Raman V. DDX3 has divergent roles in head and neck squamous cell carcinomas in smoking versus non-smoking patients. Oral Dis. 2015;21:270–1. https://doi.org/10.1111/odi.12299.

CAS  Article  PubMed  Google Scholar 

Fu R, Yang P, Li Z, Liu W, Amin S, Li Z. Avenanthramide a triggers potent ROS-mediated anti-tumor effects in colorectal cancer by directly targeting DDX3. Cell Death Dis. 2019. https://doi.org/10.1038/s41419-019-1825-5.

Article  PubMed  PubMed Central  Google Scholar 

Heerma Van Voss MR, Vesuna F, Bol GM, Meeldijk J, Raman A, Offerhaus GJ, Buerger H, Patel AH, Van Der Wall E, Van Diest PJ, et al. Nuclear DDX3 expression predicts poor outcome in colorectal and breast cancer. Onco Targets Ther. 2017;10:3501–13. https://doi.org/10.2147/OTT.S140639.

Article  PubMed  PubMed Central  Google Scholar 

Liang S, Yang Z, Li D, Miao X, Yang L, Zou Q, Yuan Y. The clinical and pathological significance of nectin-2 and DDX3 expression in pancreatic ductal adenocarcinomas. Dis Markers. 2015. https://doi.org/10.1155/2015/379568.

Article  PubMed  PubMed Central  Google Scholar 

Miao X, Yang ZL, Xiong L, Zou Q, Yuan Y, Li J, Liang L, Chen M, Chen S. 2013 Nectin-2 and DDX3 are biomarkers for metastasis and poor prognosis of squamous cell/adenosquamous carcinomas and adenocarcinoma of gallbladder. Int J Clin Exp Pathol. 2013;6(2):179.

CAS  PubMed  PubMed Central  Google Scholar 

Wilky BA, Kim C, McCarty G, Montgomery EA, Kammers K, Devine LR, Cole RN, Raman V, Loeb DM. RNA helicase DDX3: a novel therapeutic target in Ewing sarcoma. Oncogene. 2016;35:2574–83. https://doi.org/10.1038/onc.2015.336.

CAS  Article  PubMed 

留言 (0)

沒有登入
gif