TGF-β1/Smad3 upregulates UCA1 to promote liver fibrosis through DKK1 and miR18a

Song L, Chen TY, Zhao XJ et al (2019) Pterostilbene prevents hepatocyte epithelial-mesenchymal transition in fructose-induced liver fibrosis through suppressing miR-34a/Sirt1/p53 and TGF-β1/Smads signalling. Br J Pharmacol 176:1619–1634. https://doi.org/10.1111/bph.14573

CAS  Article  PubMed  PubMed Central  Google Scholar 

Boutanquoi PM, Burgy O, Beltramo G et al (2020) TRIM33 prevents pulmonary fibrosis by impairing TGF-β1 signalling. Eur Respir J 11:1901346. https://doi.org/10.1183/13993003.01346-2019

CAS  Article  Google Scholar 

Loboda A, Sobczak M, Jozkowicz A et al (2016) TGF-β1/Smads and miR-21 in renal fibrosis and inflammation. Mediators Inflamm 2016:8319283. https://doi.org/10.1155/2016/8319283

CAS  Article  PubMed  PubMed Central  Google Scholar 

Henderson NC, Rieder F, Wynn TA (2020) Fibrosis: from mechanisms to medicines. Nature 587:555–566. https://doi.org/10.1038/s41586-020-2938-9

CAS  Article  PubMed  PubMed Central  Google Scholar 

Wrana JL, Attisano L, Wieser R et al (1994) Mechanism of activation of the TGF-β receptor. Nature 370:341–347. https://doi.org/10.1038/370341a0

CAS  Article  PubMed  Google Scholar 

Kim KK, Sheppard D, Chapman HA (2018) TGF-β1 signaling and tissue fibrosis. Cold Spring Harb Perspect Biol 10:a022293. https://doi.org/10.1101/cshperspect.a022293

CAS  Article  PubMed  PubMed Central  Google Scholar 

Wei Y, Kim TJ, Peng DH et al (2017) Fibroblast-specific inhibition of TGF-β1 signaling attenuates lung and tumor fibrosis. J Clin Invest 127:3675–3688. https://doi.org/10.1172/JCI94624

Article  PubMed  PubMed Central  Google Scholar 

Zhao X, Kwan JYY, Yip K et al (2020) Targeting metabolic dysregulation for fibrosis therapy. Nat Rev Drug Discov 19:57–75. https://doi.org/10.1038/s41573-019-0040-5

CAS  Article  PubMed  Google Scholar 

Hu ML, Wang XY, Chen WM (2018) TGF-β1 upregulates the expression of lncRNA UCA1 and its downstream HXK2 to promote the growth of hepatocellular carcinoma. Eur Rev Med Pharmacol Sci 22:4846–4854. https://doi.org/10.26355/eurrev_201808_15620

Article  PubMed  Google Scholar 

Zuo ZK, Gong Y, Chen XH et al (2017) TGFβ1-induced LncRNA UCA1 upregulation promotes gastric cancer invasion and migration. DNA Cell Biol 36:159–167. https://doi.org/10.1089/dna.2016.3553

CAS  Article  PubMed  Google Scholar 

Li GY, Wang W, Sun JY et al (2018) Long non-coding RNAs AC026904.1 and UCA1: a “one-two punch” for TGF-β-induced SNAI2 activation and epithelial-mesenchymal transition in breast cancer. Theranostics 8:2846–2861. https://doi.org/10.7150/thno.23463

CAS  Article  PubMed  PubMed Central  Google Scholar 

Bian EB, Wang YY, Yang Y et al (2017) Hotair facilitates hepatic stellate cells activation and fibrogenesis in the liver. Biochim Biophys Acta Mol Basis Dis 1863:674–686. https://doi.org/10.1016/j.bbadis.2016.12.009

CAS  Article  PubMed  Google Scholar 

Yu F, Chen B, Fan X et al (2017) Epigenetically-regulated microRNA-9-5p suppresses the activation of hepatic stellate cells via TGFBR1 and TGFBR2. Cell Physiol Biochem 43:2242–2252. https://doi.org/10.1159/000484303

CAS  Article  PubMed  Google Scholar 

Yang Y, Chen XX, Li WX et al (2017) EZH2-mediated repression of Dkk1 promotes hepatic stellate cell activation and hepatic fibrosis. J Cell Mol Med 21:2317–2328. https://doi.org/10.1111/jcmm.13153

CAS  Article  PubMed  PubMed Central  Google Scholar 

Xu T, Yan S, Wang M, Jiang L et al (2020) LncRNA UCA1 induces acquired resistance to gefitinib by epigenetically silencing CDKN1A expression in non-small-cell lung cancer. Front Oncol 10:656. https://doi.org/10.3389/fonc.2020.00656

Article  PubMed  PubMed Central  Google Scholar 

Hu JJ, Song W, Zhang SD et al (2016) HBx-upregulated lncRNA UCA1 promotes cell growth and tumorigenesis by recruiting EZH2 and repressing p27Kip1/CDK2 signaling. Sci Rep 6:23521. https://doi.org/10.1038/srep23521

CAS  Article  PubMed  PubMed Central  Google Scholar 

He X, Wang J, Chen J et al (2019) lncRNA UCA1 predicts a poor prognosis and regulates cell proliferation and migration by repressing p21 and SPRY1 expression in GC. Mol Ther Nucleic Acids 18:605–616. https://doi.org/10.1016/j.omtn.2019.09.024

CAS  Article  PubMed  PubMed Central  Google Scholar 

Cai Q, Jin L, Wang S et al (2017) Long non-coding RNA UCA1 promotes gallbladder cancer progression by epigenetically repressing p21 and E-cadherin expression. Oncotarget 8:47957–47968. https://doi.org/10.18632/oncotarget

Article  PubMed  PubMed Central  Google Scholar 

Thiele BJ, Doller A, Kähne T et al (2004) RNA-binding proteins heterogeneous nuclear ribonucleoprotein A1, E1, and K are involved in post-transcriptional control of collagen I and III synthesis. Circ Res 95:1058–1066. https://doi.org/10.1161/01.RES.0000149166.33833.08

CAS  Article  PubMed  Google Scholar 

Roderburg C, Urban GW, Bettermann K et al (2011) Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis. Hepatology 53:209–218. https://doi.org/10.1002/hep.23922

CAS  Article  PubMed  Google Scholar 

Sekiya Y, Ogawa T, Yoshizato K et al (2011) Suppression of hepatic stellate cell activation by microRNA-29b. Biochem Biophys Res Commun 412:74–79. https://doi.org/10.1016/j.bbrc.2011.07.041

CAS  Article  PubMed  Google Scholar 

Huang YH, Yang YL, Wang FS (2018) The role of miR-29a in the regulation, function, and signaling of liver fibrosis. Int J Mol Sci 19:1889. https://doi.org/10.3390/ijms19071889

CAS  Article  PubMed Central  Google Scholar 

Wang X, He Y, Mackowiak B et al (2021) MicroRNAs as regulators, biomarkers and therapeutic targets in liver diseases. Gut 70:784–795. https://doi.org/10.1136/gutjnl-2020-322526

CAS  Article  PubMed  Google Scholar 

Li X, Wu Y, Liu A et al (2016) Long non-coding RNA UCA1 enhances tamoxifen resistance in breast cancer cells through a miR-18a-HIF1α feedback regulatory loop. Tumour Biol 37:14733–14743. https://doi.org/10.1007/s13277-016-5348-8

CAS  Article  PubMed  Google Scholar 

Kolenda T, Guglas K, Kopczyńska M et al (2020) Good or not good: role of miR-18a in cancer biology. Rep Pract Oncol Radiother 25:808–819. https://doi.org/10.1016/j.rpor.2020.07.006

Article  PubMed  PubMed Central  Google Scholar 

Xu P, Li Z, Wang Y, Yu X et al (2020) miR-18a Contributes to preeclampsia by downregulating Smad2 (full length) and reducing TGF-β signaling. Mol Ther Nucleic Acids 22:542–556. https://doi.org/10.1016/j.omtn.2020.09.019

CAS  Article  PubMed  PubMed Central  Google Scholar 

Lian C, Tao T, Su P et al (2020) Targeting miR-18a sensitizes chondrocytes to anticytokine therapy to prevent osteoarthritis progression. Cell Death Dis 11:947. https://doi.org/10.1038/s41419-020-03155-9

CAS  Article  PubMed  PubMed Central  Google Scholar 

Meng XM, Nikolic-Paterson DJ, Lan HY (2016) TGF-β: the master regulator of fibrosis. Nat Rev Nephrol 12:325–338. https://doi.org/10.1038/nrneph.2016.48

CAS  Article  PubMed  Google Scholar 

Hata A, Chen YG (2016) TGF-β signaling from receptors to Smads. Cold Spring Harb Perspect Biol 8:a022061. https://doi.org/10.1101/cshperspect.a022061

CAS  Article  PubMed  PubMed Central  Google Scholar 

Zhang K, Han X, Zhang Z et al (2017) The liver-enriched lnc-LFAR1 promotes liver fibrosis by activating TGFβ and Notch pathways. Nat Commun 8:144. https://doi.org/10.1038/s41467-017-00204-4

CAS  Article  PubMed  PubMed Central  Google Scholar 

Klavdianou K, Liossis SN, Daoussis D (2017) Dkk1: a key molecule in joint remodelling and fibrosis. Mediterr J Rheumatol 28:174–182. https://doi.org/10.31138/mjr.28.4.174

Article  PubMed  PubMed Central  Google Scholar 

Akhmetshina A, Palumbo K, Dees C et al (2012) Activation of canonical Wnt signalling is required for TGF-β-mediated fibrosis. Nat Commun 3:735. https://doi.org/10.1038/ncomms1734

CAS  Article  PubMed  Google Scholar 

Liu Z, Wang Y, Yuan S et al (2021) Regulatory role of long non-coding RNA UCA1 in signaling pathways and its clinical applications. Oncol Lett 21:404. https://doi.org/10.3892/ol.2021.12665

CAS  Article  PubMed  PubMed Central  Google Scholar 

Guo X, Zhang Y, Mayakonda A et al (2018) ARID1A and CEBPα cooperatively inhibit UCA1 transcription in breast cancer. Oncogene 37:5939–5951. https://doi.org/10.1038/s41388-018-0371-4

CAS  Article  PubMed  Google Scholar 

Wu W, Zhang S, Li X et al (2013) Ets-2 regulates cell apoptosis via the Akt pathway, through the regulation of urothelial cancer associated 1, a long non-coding RNA, in bladder cancer cells. PLoS ONE 8:e73920. https://doi.org/10.1371/journal.pone.0073920

CAS  Article  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif