Dexmedetomidine Confers Protection Against Neuronal Oxygen Glucose Deprivation-Reperfusion by Regulating SIRT3 Mediated Autophagy

Dahmani S, Paris A, Jannier V, Hein L, Rouelle D, Scholz J et al (2008) Dexmedetomidine increases hippocampal phosphorylated extracellular signalregulated protein kinase 1 and 2 content by an a 2-adrenoceptor-independent mechanism: evidence for the involvement of imidazoline I1 receptors. Anesthesiology 108:457–466

CAS  PubMed  Google Scholar 

Engelhard K, Werner C, Eberspacher E, Bachl M, Blobner M, Hildt E et al (2003) The effect of the a2-agonist dexmedetomidine and the N-methyl-Daspartate antagonist S (+)-ketamine on the expression of apoptosis-regulating proteins after incomplete cerebral ischemia and reperfusion in rats. Anesth Analg 96:524–531

CAS  PubMed  Google Scholar 

Dahmani S, Rouelle D, Gressens P, Mantz J (2010) Characterization of the postconditioning effect of dexmedetomidine in mouse organotypic hippocampal slice cultures exposed to oxygen and glucose deprivation. Anesthesiology 112:373–383

CAS  PubMed  Google Scholar 

Cui J, Zhao H, Wang C, Sun JJ, Lu K, Ma D (2015) Dexmedetomidine attenuates oxidative stress induced lung alveolar epithelial cell apoptosis in vitro. Oxid Med Cell Longev 2015:358396

PubMed  PubMed Central  Google Scholar 

Gencer B, Karaca T, Tufan HA, Kara S, Arikan S, Toman H et al (2014) The protective effects of dexmedetomidine against apoptosis in retinal ischemia/reperfusion injury in rats. Cutan Ocul Toxicol 33:283–288

CAS  PubMed  Google Scholar 

Si Y, Bao H, Han L, Chen L, Zeng L, Jing L et al (2018) Dexmedetomidine attenuation of renal ischaemia-reperfusion injury requires sirtuin 3 activation. Br J Anaesth 121(6):1260–1271

CAS  PubMed  Google Scholar 

Yu W, Lyu J, Jia L, Sheng M, Yu H, Du H (2021) Dexmedetomidine ameliorates hippocampus injury and cognitive dysfunction induced by hepatic ischemia/reperfusion by activating SIRT3-mediated mitophagy and inhibiting activation of the NLRP3 inflammasome in young rats. Oxid Med Cell Longev 4(2021):9797165

Google Scholar 

Zheng, Y., Shi, B., Ma, M., Wu, X., Lin, X. (2019) The novel relationship between Sirt3 and autophagy in myocardial ischemia-reperfusion. J Cell Physiol. May;234(5):5488–5495.

Zhang J, Xiang H, Liu J, Chen Y, He R-R, Liu B (2020) Mitochondrial Sirtuin 3: New emerging biological function and therapeutic target. Theranostics 18:8315–8342

Google Scholar 

Luo P, Yang LK et al (2017) SIRT3 confers protection against neuronal ischemia by inducing autophagy: Involvement of the AMPK/mTOR pathway. Free Radic Biol Med 108:345–353

PubMed  Google Scholar 

Liu S, Chen S, Li M, Zhang B, Shen P, Liu P et al (2016) Autophagy activation attenuates angiotensin II-induced cardiac fibrosis. Arch Biochem Biophys 590:37–47

CAS  PubMed  Google Scholar 

Sheng R, Zhang L, Han R, Liu X, Gao B, Qin Z (2010) Autophagy activation is associated with neuroprotection in a rat model of focal cerebral ischemic preconditioning. Autophagy 6:482–494

CAS  PubMed  Google Scholar 

Wen YD, Sheng R, Zhang LS, Han R, Zhang X, Zhang XD et al (2008) Neuronal injury in rat model of permanent focal cerebral ischemia is associated with activation of autophagic and lysosomal pathways. Autophagy 4:762–769

CAS  PubMed  Google Scholar 

Carloni S, Girelli S, Scopa C, Buonocore G, Longini M, Balduini W (2010) Activation of autophagy and Akt/CREB signaling play an equivalent role in the neuroprotective effect of rapamycin in neonatal hypoxia-ischemia. Autophagy 6:366–377

CAS  PubMed  Google Scholar 

Chen D, Zheng K, Wu H, Zhang X, Ye W, Tan X et al (2021) Lin28a attenuates cerebral ischemia/reperfusion injury through regulating Sirt3-induced autophagy. Brain Res Bull 170:39–48

CAS  PubMed  Google Scholar 

Zhang M, Deng YN, Zhang JY, Liu J, Li YB, Su H et al (2018) SIRT3 protects rotenone-induced injury in SH-SY5Y cells by promoting autophagy through the LKB1-AMPK-mTOR pathway. Aging dis 9(2):273–286

PubMed  PubMed Central  Google Scholar 

Sun X, Wang D, Zhang T, Lu X, Duan F, Ju L et al (2020) Eugenol attenuates cerebral ischemia-reperfusion injury by enhancing autophagy via AMPK-mTOR-P70S6K pathway. Front Pharmacol 21(11):84

Google Scholar 

Majd S, Power JHT, Chataway TK, Grantham HJM (2018) A comparison of LKB1/AMPK/mTOR metabolic axis response to global ischaemia in brain, heart, liver and kidney in a rat model of cardiac arrest. BMC Cell Biol 19(1):7

PubMed  PubMed Central  Google Scholar 

Yang T, Feng X, Zhao Y, Zhang H, Cui H, Wei M et al (2020) Dexmedetomidine enhances autophagy via α2-AR/AMPK/mTOR pathway to inhibit the activation of NLRP3 inflammasome and subsequently alleviates lipopolysaccharide-induced acute kidney injury. Front Pharmacol 24(11):790

Google Scholar 

Hu Z, Yang B, Mo X, Zhou F (2016) HspB8 mediates neuroprotection against OGD/R in N2A cells through the phosphoinositide 3-kinase/Akt pathway. Brain Res 1644:15–21

CAS  PubMed  Google Scholar 

Wang K, Zhu Y (2018) Dexmedetomidine protects against oxygen-glucose deprivation/ reoxygenation injury-induced apoptosis via the p38 MAPK/ERK signalling pathway. J Int Med Res 46(2):675–686

CAS  PubMed  Google Scholar 

Wang R, Zhang JY, Zhang M, Zhai MG, Di SY, Han QH et al (2018) Curcumin attenuates IR-induced myocardial injury by activating SIRT3. Eur Rev Med Pharmacol Sci 22(4):1150–1160

CAS  PubMed  Google Scholar 

Wang G, Wang T, Zhang Y, Li F, Yu B, Kou J (2019) Schizandrin protects against OGD/R-induced neuronal injury by suppressing autophagy: involvement of the AMPK/mTOR Pathway. Molecules. 24(19):3624

CAS  PubMed Central  Google Scholar 

Ahn BH, Kim HS, Song S, Lee IH, Liu J, Vassilopoulos A et al (2008) A role for the mitochondrial deacetylase SIRT3 in regulating energy homeostasis. Proc Natl Acad Sci USA 105:14447–14452

CAS  PubMed  PubMed Central  Google Scholar 

Zhang JY, Deng YN, Zhang M, Su H, Qu QM (2016) SIRT3 acts as a neuroprotective agent in rotenone-induced Parkinson cell model. Neurochem Res 41:1761–1773

CAS  PubMed  Google Scholar 

Liang Q, Benavides GA, Vassilopoulos A, Gius D, Darley-Usmar V, Zhang J (2013) Bioenergetic and autophagic control by SIRT3 in response to nutrient deprivation in mouse embryonic fibroblasts. Biochem J 454:249–257

CAS  PubMed  Google Scholar 

Pi H, Xu S, Reiter RJ, Guo P, Zhang L, Li Y et al (2015) SIRT3-SOD2-mROS-dependent autophagy in cadmium-induced hepatotoxicity and salvage by melatonin. Autophagy 11:1037–1051

CAS  PubMed  PubMed Central  Google Scholar 

Pillai VB, Sundaresan NR, Kim G, Gupta M, Rajamohan SB, Pillai JB et al (2010) Exogenous NAD blocks cardiac hypertrophic response via activation of the SIRT3-LKB1-AMP-activated kinase pathway. J Biol Chem 285:3133–3144

CAS  PubMed  Google Scholar 

Kim E, Kim HC, Lee S, Ryu HG, Park YH, Kim JH et al (2017) Dexmedetomidine confers neuroprotection against transient global cerebral ischemia/reperfusion injury in rats by inhibiting inflammation through inactivation of the TLR-4/NF-kB pathway. Neurosci Lett 649:20–27

CAS  PubMed  Google Scholar 

Sun Y, Gao Q, Wu N, Li SD, Yao JX, Fan WJ (2015) Protective effects of dexmedetomidine on intestinal ischemia-reperfusion injury. Exp Ther Med 10:647–652

CAS  PubMed  PubMed Central  Google Scholar 

Ginet V, Puyal J, Clarke PG, Truttmann AC (2009) Enhancement of autophagic flux after neonatal cerebral hypoxia-ischemia and its regionspecific relationship to apoptotic mechanisms. Am J Pathol 175:1962–1974

CAS  PubMed  PubMed Central  Google Scholar 

Emerling BM, Weinberg F, Snyder C, Burgess Z, Mutlu GM, Viollet B et al (2009) Hypoxic activation of AMPK is dependent on mitochondrial ROS but independent of an increase in AMP/ATP ratio. Free Radic Biol Med 46:1386–1391

CAS  PubMed  PubMed Central  Google Scholar 

Hu Z, Yang B, Mo X, Xiao H (2015) Mechanism and regulation of autophagy and its role in neuronal diseases. Mol Neurobiol 52:1190–1209

CAS  PubMed  Google Scholar 

Shi R, Weng J, Zhao L, Li XM, Gao TM, Kong J (2012) Excessive autophagy contributes to neuron death in cerebral ischemia. CNS Neurosci Ther 18:250–260

CAS  PubMed  PubMed Central  Google Scholar 

Yenari MA, Han HS (2012) Neuroprotective mechanisms of hypothermia in brain ischaemia. Nat Rev Neurosci 13:267–278

CAS  PubMed  Google Scholar 

Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N et al (2005) Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122:927–939

CAS  PubMed  Google Scholar 

Qin AP, Liu CF, Qin YY, Hong LZ, Xu M, Yang L et al (2010) Autophagy was activated in injured astrocytes and mildly decreased cell survival following glucose and oxygen deprivation and focal cerebral ischemia. Autophagy 6:738–753

CAS  PubMed  Google Scholar 

Chen Y, Dorn GW (2013) PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science 340(6131):471–47

CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif