When the infectious environment meets the AD brain

Fuyuki K, Hasegawa H. Reconsideration of Amyloid Hypothesis and Tau Hypothesis in Alzheimer's Disease. Front Neurosci. 2018;12(25). https://doi.org/10.3389/fnins.2018.00025.

Chen GF, Xu TH, Yan Y, Zhou YR, Jiang Y, Melcher K, et al. Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacologica Sinica. 2017;38(9):1205–35.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Murphy MP, Levine H. Alzheimer’s Disease and the β-Amyloid Peptide. J Alzheimers Dis. 2010;19(1):311.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Fainstein N, Dan-Goor N, Ben-Hur T. Resident brain neural precursor cells develop age-dependent loss of therapeutic functions in alzheimer’s mice. Neurobiol Aging. 2018;1(72):40–52.

Article  CAS  Google Scholar 

Chételat G. Alzheimer disease: Aβ-independent processes-rethinking preclinical AD. Nature Reviews Neurology. 2013;9(3):123.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Villemagne VL, Pike KE, Chételat G, Ellis KA, Mulligan RS, Bourgeat P, et al. Longitudinal assessment of Aβ and cognition in aging and alzheimer disease. Ann Neurol. 2011;69(1):181–92.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Jack CR, Wiste HJ, Lesnick TG, Weigand SD, Knopman DS, Vemuri P, et al. Brain β-amyloid load approaches a plateau. Neurology. 2013;80(10):890–6.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Villemagne VL, Burnham S, Bourgeat P, Brown B, Ellis KA, Salvado O, et al. Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study. Lancet Neurol. 2013;12(4):357–67.

CAS  PubMed  Article  Google Scholar 

Spires-Jones TL, Stoothoff WH, de Calignon A, Jones PB, Hyman BT. Tau pathophysiology in neurodegeneration: a tangled issue. Trends Neurosci. 2009;32(3):150–9.

CAS  PubMed  Article  Google Scholar 

Brettschneider J, Arai K, del Tredici K, Toledo JB, Robinson JL, Lee EB, et al. TDP-43 pathology and neuronal loss in amyotrophic lateral sclerosis spinal cord. Acta Neuropathol. 2014;3:423–37.

Google Scholar 

Gamblin TC, Chen F, Zambrano A, Abraha A, Lagalwar S, Guillozet AL, et al. Caspase cleavage of tau: linking amyloid and neurofibrillary tangles in Alzheimer’s disease. Proc Natl Acad Sci U S A. 2003;100(17):10032–7.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Blurton-Jones M, LaFerla F. Pathways by Which Aβ Facilitates Tau Pathology. Curr Alzheimer Res. 2006;3(5):437–48.

Ballatore C, Lee VMY, Trojanowski JQ. Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat Rev Neurosci. 2007;8(9):663–72.

CAS  PubMed  Article  Google Scholar 

Frank S, Burbach GJ, Bonin M, Walter M, Streit W, Bechmann I, et al. TREM2 is upregulated in amyloid plaque-associated microglia in aged APP23 transgenic mice. Glia. 2008;56(13):1438–47.

PubMed  Article  Google Scholar 

Yin Z, Raj D, Saiepour N, van Dam D, Brouwer N, Holtman IR, et al. Immune hyperreactivity of Aβ plaque-associated microglia in alzheimer’s disease. Neurobiol Aging. 2017;1(55):115–22.

Article  CAS  Google Scholar 

Jana M, Palencia CA, Pahan K. Fibrillar Amyloid-β peptides activate microglia via TLR2: implications for alzheimer’s disease. J Immunol. 2008;181(10):7254–62.

CAS  PubMed  Article  Google Scholar 

Ashraf GM, Tarasov VV, Makhmutova A, Chubarev VN, Avila-Rodriguez M, Bachurin SO, et al. The Possibility of an Infectious Etiology of Alzheimer Disease. Mol Neurobiol. 2018;56(6):4479–91.

PubMed  Article  CAS  Google Scholar 

Nayak D, Roth TL, McGavern DB. Microglia Development and Function*. http://dx.doi.org/10.1146/annurev-immunol-032713-120240 [Internet]. 2014 Mar 21 [cited 2022 Jan 18];32:367–402. Available from: https://www.annualreviews.org/doi/abs/101146/annurev-immunol-032713-120240

Colonna M, Butovsky O. Microglia Function in the Central Nervous System During Health and Neurodegeneration. Annu Rev Immunol. 2017;35:441.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hansen DV, Hanson JE, Sheng M. Microglia in Alzheimer’s disease. J Cell Biol. 2018;217(2):459–72.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hemonnot AL, Hua J, Ulmann L, Hirbec H. Microglia in Alzheimer disease: well-known targets and new opportunities. Front Cell Infection Microbiology. 2019;9(JUL):233.

Google Scholar 

Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK, et al. A unique microglia type associated with restricting development of alzheimer’s disease. Cell. 2017;169(7):1276-1290.e17.

CAS  PubMed  Article  Google Scholar 

Deczkowska A, Keren-Shaul H, Weiner A, Colonna M, Schwartz M, Amit I. Disease-associated microglia: a universal immune sensor of neurodegeneration. Cell. 2018;173(5):1073–81.

CAS  PubMed  Article  Google Scholar 

Song WM, Colonna M. The identity and function of microglia in neurodegeneration. Nat Immunol. 2018;19(10):1048–58.

CAS  PubMed  Article  Google Scholar 

Polazzi E, Contestabile A. Reciprocal interactions between microglia and neurons: From survival to neuropathology. Rev Neurosci. 2002;13(3):221–42.

PubMed  Article  Google Scholar 

Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci. 2007;8(1):57–69.

CAS  PubMed  Article  Google Scholar 

Lull ME, Block ML. Microglial activation and chronic neurodegeneration. Neurotherapeutics. 2010;7(4):354–65.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Takeda S, Sato N, Uchio-Yamada K, Sawada K, Kunieda T, Takeuchi D, et al. Diabetes-accelerated memory dysfunction via cerebrovascular inflammation and Aβ deposition in an alzheimer mouse model with diabetes. Proc Natl Acad Sci U S A. 2010;107(15):7036–41.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Refolo LM, Pappolla MA, Malester B, LaFrancois J, Bryant-Thomas T, Wang R, et al. Hypercholesterolemia accelerates the alzheimer’s amyloid pathology in a transgenic mouse model. Neurobiol Dis. 2000;7(4):321–31.

CAS  PubMed  Article  Google Scholar 

Snyder HM, Corriveau RA, Craft S, Faber JE, Greenberg SM, Knopman D, et al. Vascular contributions to cognitive impairment and dementia including alzheimer’s disease. Alzheimer’s Dement. 2015;11(6):710–7.

Article  Google Scholar 

Deane R, du Yan S, Submamaryan RK, LaRue B, Jovanovic S, Hogg E, et al. RAGE mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain. Nat Med. 2003;9(7):907–13.

CAS  PubMed  Article  Google Scholar 

Sims-Robinson C, Kim B, Rosko A, Feldman EL. How does diabetes accelerate alzheimer disease pathology? Nat Rev Neurol. 2010;6(10):551–9.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Prasad S, Sajja RK, Naik P, Cucullo L. Diabetes mellitus and blood-brain barrier dysfunction: an overview. J Pharmacovigil. 2014;2(2):125.

PubMed  PubMed Central  Google Scholar 

Mildner A, Schlevogt B, Kierdorf K, Böttcher C, Erny D, Kummer MP, et al. Distinct and non-redundant roles of microglia and myeloid subsets in mouse models of alzheimer’s disease. J Neurosci. 2011;31(31):11159–71.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Basset NEWSANDVIEWS;, Crone G, Saumon C, Matthay G, Folkesson MA, Clerici HG. Immune cells may fend off Alzheimer disease. Nat Med 2007;13(4):408–9. Available from: https://www.nature.com/articles/nm0407-408

Dansokho C, Ait Ahmed D, Aid S, Toly-Ndour C, Chaigneau T, Calle V, et al. Regulatory T cells delay disease progression in Alzheimer-like pathology. Brain. 2016;139(4):1237–51 https://academic.oup.com/brain/article/139/4/1237/2464189.

PubMed  Article  Google Scholar 

Baek H, Ye M, Kang GH, Lee C, Lee G, Choi DB, et al. Neuroprotective effects of CD4+CD25+Foxp3+ regulatory T cells in a 3xTg-AD Alzheimer’s disease model. Oncotarget. 2016;7(43):69347 Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5342482/

PubMed  PubMed Central  Article  Google Scholar 

Baruch K, Rosenzweig N, Kertser A, Deczkowska A, Sharif AM, Spinrad A, et al. Breaking immune tolerance by targeting Foxp3+ regulatory T cells mitigates Alzheimer’s disease pathology. Nat Commun. 2015;6(1):1–12. Available from: https://www.nature.com/articles/ncomms8967.

Article  CAS  Google Scholar 

Montagne A, Zhao Z, Zlokovic BV. Alzheimer’s disease: A matter of blood–brain barrier dysfunction? J Exp Med. 2017;214(11):3151 Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5679168/

CAS  PubMed  PubMed Central  Article  Google Scholar 

Zlokovic BV. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci. 2011;12(12):723–38. Available from: https://www.nature.com/articles/nrn3114.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Zhao Z, Nelson AR, Betsholtz C, Zlokovic BV. Establishment and Dysfunction of the Blood-Brain Barrier. Cell. 2015;163(5):1064–78.

CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif