Towards efficient production of highly optically pure d-lactic acid from lignocellulosic hydrolysates using newly isolated lactic acid bacteria

ElsevierVolume 72, 25 December 2022, Pages 1-10New BiotechnologyHighlights•

D-lactic acid production with high optical purity from.

Novel isolates were able to co-consume glucose and arabinose and produce D-lactic acid.

Co-cultivation of hetero- and homofermentative strains resulted in production of D-lactic acid with enhanced optical purity.

A newly isolated Leuconostoc pseudomesenteroides strain produced 40 g/L of D-lactate with 99.4 % optical purity.

Abstract

This study presents the production of D-lactic acid with high enantiomeric purity using lignocellulosic hydrolysates from newly isolated lactic acid bacterial (LAB) strains. Six strains, 4 heterofermentative and 2 homofermentative, were investigated for their ability to grow and produce lactic acid on sugar beet pulp (SBP) hydrolysates, containing a mixture of hexose and pentose sugars. Among the strains tested, three were isolates designated as A250, A257 and A15, all of which belonged to the genus Leuconostoc. Only strain A250 could be reliably identified as Leuconostoc pseudomesenteroides based on cluster analysis of Maldi-ToF spectra. All strains produced D-lactic acid in the presence of SBP hydrolysates, but with varying optical purities. The homofermentative strains achieved higher D-lactic acid optical purities, but without assimilating the pentose sugars. Co-cultivation of the homofermentative strain Lactobacillus coryniformis subsp. torquens DSM 20005 together with the heterofermentative isolate A250 led to the production of 21.7 g/L D-lactic acid with 99.3 % optical purity. This strategy enabled the complete sugar utilization of the substrate. Nanofiltration of the SBP hydrolysate enhanced the enantiomeric purity of the D-lactic acid produced from the isolates A250 and A15 by about 5 %. The highest D-lactic acid concentration (40 g/L) was achieved in fed-batch cultures of A250 isolate with nanofiltered SBP, where optical purity was 99.4 %. The results of this study underline the feasibility of a novel isolate as an efficient D-lactic acid producer using lignocellulosic hydrolysates.

AbbreviationsMRS

De Man, Rogosa and Sharpe

MALDI-ToF MS

matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

Keywords

d-lactic acid

Optical purity

Lignocellulosics

Leuconostoc sp.

Co-cultivation

Nanofiltration

© 2022 The Authors. Published by Elsevier B.V.

留言 (0)

沒有登入
gif