On the relationship between tripartite motif-containing 22 single-nucleotide polymorphisms and COVID-19 infection severity

The invasion of viral infection into target cells is blocked by several host factors induced by pattern recognition receptors (PRRs) after virus recognition. Primarily, type I IFNs play a role in inducing hundreds of genes with antiviral functions. TRIM22 is one of the genes limiting viral infections. It is constitutively expressed in epithelial cells; however, it is immediately induced by viral infection. In accordance with intracellular innate immunity effector proteins, the function of TRIM22 is broad spectrum and is not specific to a single virus. However, several RNA and DNA viruses are restricted, and many other yet unknown viruses may be sensitive to their antiviral function. Moreover, SNPs in genes involved in the innate immune system can affect the likelihood of a clinical course of viral infection [4, 6, 12]. In other words, this was the first study to investigate whether the TRIM22 SNPs genotypes affect the recovery or severity of COVID-19 infection.

TRIM22 is an interferon-induced protein remarkably inhibiting the various viruses replication, including HIV-1, HCV, and HBV that is located on chromosome 11. Moreover, SNPs on TRIM22 have been associated with several aspects of viral infections such as chronic hepatitis B infection, HIV replication, and specific antibody and cytokine levels after vaccination against measles and rubella [13,14,15,16,17,18]. Due to TRIM22 constitutive expression in epithelial cells, its potential role in limiting the SARS-CoV-2 infection causing the currently towering COVID-19 pandemic is remarkable. However, additional experiments are recommended to determine whether TRIM22 limits the SARS-CoV-2 replication [19].

In the present study, patients with TRIM22 rs1063303 CC, rs7935564 AA, and rs7113258 AA genotypes had a higher rate of improved COVID-19 infection compared to others.

A significant higher prevalence of TRIM22 rs1063303 C-allele, rs7935564 A-allele, and rs7113258 A-allele carriers was observed in dead patients than in improved patients. The allele frequency of TRIM22 rs1063303, rs7935564, and rs7113258 in this study was 0.49, 0.44, and 0.47, respectively. This was in agreement with our previous study that we indicated the relationship between these SNPs and HCV treatment [7]. The MAF for TRIM22 rs1063303 in European (0.52), African (0.20), Asian (0.12), other Asian (0.43), and Latin American (0.00) was reported in dbSNP the NCBI dbSNP database (https://www.ncbi.nlm.nih.gov/SNP/). For TRIM22 rs7935564, this value was in European (0.60), African (0.49), Asian (0.18), South Asian (0.52), and Latin American (0.53). Also, for TRIM22 rs7113258, MAF was in European (0.18), African (0.32), Asian (0.36), East Asian (0.41), and Latin American (0.32). Totally, we observed large differences in the frequency of MAF of these SNPs among the various ethnic groups.

GGT and GGA haplotypes had more association with the risk of COVID-19 mortality than other haplotypes. Most patients with COVID-19 who had GGT and GGA haplotypes were affected by the severe form of the disease.

The rs7113258 on TRIM22 is located in 3′ untranslated region (UTR) and could be the binding site for miRNAs. Accordingly, it may have a regulatory effect on the expression of the TRIM22 gene [20]. By binding to levels in the 3′UTR region, miRNAs can function as the negative regulators of gene expression [21]. It is documented that the TRIM22 rs7113258 A allele generates putative target sites for many miRNAs such as hsa-miR-4495, hsa-miR-3148, and hsa-miR-3668; however, the TRIM22 rs7113258 T allele damages these target sites and generates other miRNAs, including hsa-miR-4678 and hsa-miR-3177-5p. Therefore, the differences in miRNAs binding between the TRIM22 rs7113258 genotypes may be associated with the observed correlation [7, 10].

Furthermore, SNPs in TRIM22 are involved in several aspects of viral infections, including the replication of HIV, HBV infection, and HCV infection [7, 10, 17]. In this regard, TRIM22 rs1063303 G > C makes amino acids exchange from arginine to threonine at position 242 of the TRIM22 protein. The TRIM22 rs1063303 GG variant is correlated with the adverse effect of increasing TRIM22 expression and reducing TRIM22’s antiviral activity [22]. In this respect, TRIM22 overexpression was negatively correlated with HCV and HIV-1 viral load [15, 23]. On the other hand, TRIM22 gene silencing increased HIV1 infection in target cells [15]. Moreover, the TRIM22 rs1063303 GG genotype is also correlated with more efficient replication of HIV1 [17]. In this study, the TRIM22 rs1063303 GG genotype was correlated with the COVID-19 infection severity with a high viral load. There is a possibility that the rs1063303 GG genotype may interfere with the regulation of HCV replication and promote a more robust inflammatory response, which could increase the infection severity more efficiently, as reported in HCV infection [10]. Further, the replication of HIV-1 was more effective in PBMCs from patients with TRIM22 rs7935564 G allele than from patients with TRIM22 rs7935564 A allele [17]. In the present study, TRIM22 rs7935564 GG was associated with the COVID-19 infection severity.

The TRIM22 rs1063303 GG, rs7935564 GG, and rs7113258 TT genotypes were strongly associated with the severity of COVID-19 infection. Using the ROC curve analysis, the most powerful predictive factor of the COVID-19 infection severity was TRIM22 rs7935564 (GG). To the best of our knowledge, there is no report on the genotypes frequencies of TRIM22 SNPs related to COVID-19 infection. These genotypes of TRIM22 SNPs may be an independent predictor of the COVID-19 infection severity.

In our study, the high levels of CRP and ESR and the low levels of LDL and real-time PCR Ct were significantly associated with the COVID-19 infection severity. These results were in agreement with previous studies, indicating that disease severity was correlated with the lower levels of total LDL and cholesterol [24]. Lowering cellular cholesterol can increase cholesterol uptake from the bloodstream, leading to lower serum HDL and LDL cholesterol levels. This may lead to the upregulation of lipoprotein receptors, especially scavenger receptor class B type 1, thereby enhancing cholesterol uptake into the plasma membrane and SARS-CoV-2 infection rates [25].

T-regulatory lymphocytes (Tregs) are the primary defense against uncontrolled inflammation, and common viral infections. The Treg levels are low in many patients infected with SARS-CoV-2 and may be increased with 25-hydroxyvitamin D supplementation. The low levels of 25-hydroxyvitamin D are associated with an increased inflammatory cytokine and a significantly increased risk of pneumonia and viral upper respiratory tract infections. Moreover, 25-hydroxyvitamin D deficiency is correlated with an increase in thrombotic episodes commonly observed with COVID-19 [26].

In the present study, low Ct of rtRT-PCR was found in dead patients. Some studies have demonstrated that low PCR-Ct levels increase the risk of hospitalization and death in the intensive care unit. A correlation between viral load and the disease severity, as determined by PCR-Ct measurements, was also suggested [9].

One of the limitations of this study was the lack of data on survey correlations between ethnics and these SNPs on TRIM22. Another limitation was the PCR-Ct value; however, this relationship has not yet been fully standardized and quantified.

In conclusion, the present study's finding revealed a strong correlation between the lower levels of real-time PCR Ct values, 25-hydroxyvitamin D, LDL, cholesterol, and higher levels of ESR and CRP the severity of COVID-19 infection. We also demonstrated that patients with TRIM22 rs1063303 GG, rs7935564 GG, and rs7113258 TT were exposed to more severe COVID-19 infection compared to patients with other genotypes. Further experiments are recommended to confirm the findings.

留言 (0)

沒有登入
gif