Comparison of acquisition rate and agreement of axial length with two swept-source optical coherence tomographers and a partial coherence interferometer

Jin GJ, Crandall AS, Jones JJ (2007) Intraocular lens exchange due to incorrect lens power. Ophthalmology 114:417–424. https://doi.org/10.1016/j.ophtha.2006.07.041

Article  PubMed  Google Scholar 

Norrby S (2008) Sources of error in intraocular lens power calculation. J Cataract Refract Surg 34:368–376. https://doi.org/10.1016/j.jcrs.2007.10.031

Article  PubMed  Google Scholar 

Olsen T (1992) Sources of error in intraocular lens power calculation. J Cataract Refract Surg 18:125–129. https://doi.org/10.1016/s0886-3350(13)80917-0

CAS  Article  PubMed  Google Scholar 

Shammas HJ, Chan S (2010) Precision of biometry, keratometry, and refractive measurements with a partial coherence interferometry-keratometry device. J Cataract Refract Surg 36:1474–1478. https://doi.org/10.1016/j.jcrs.2010.02.027

Article  PubMed  Google Scholar 

Lam AK, Chan R, Pang PC (2001) The repeatability and accuracy of axial length and anterior chamber depth measurements from the IOLMaster. Ophthalmic Physiol Opt 21:477–483. https://doi.org/10.1046/j.1475-1313.2001.00611.x

CAS  Article  PubMed  Google Scholar 

Németh J, Fekete O, Pesztenlehrer N (2003) Optical and ultrasound measurement of axial length and anterior chamber depth for intraocular lens power calculation. J Cataract Refract Surg 29:85–88. https://doi.org/10.1016/s0886-3350(02)01500-6

Article  PubMed  Google Scholar 

Vogel A, Dick HB, Krummenauer F (2001) Reproducibility of optical biometry using partial coherence interferometry : intraobserver and interobserver reliability. J Cataract Refract Surg 27:1961–1968. https://doi.org/10.1016/s0886-3350(01)01214-7

CAS  Article  PubMed  Google Scholar 

Rose LT, Moshegov CN (2003) Comparison of the Zeiss IOLMaster and applanation A-scan ultrasound: biometry for intraocular lens calculation. Clin Exp Ophthalmol 31:121–124. https://doi.org/10.1046/j.1442-9071.2003.00617.x

Article  PubMed  Google Scholar 

Bhatt AB, Schefler AC, Feuer WJ, Yoo SH, Murray TG (2008) Comparison of predictions made by the intraocular lens master and ultrasound biometry. Arch Ophthalmol 126:929–933. https://doi.org/10.1001/archopht.126.7.929

Article  PubMed  Google Scholar 

Hill W, Angeles R, Otani T (2008) Evaluation of a new IOLMaster algorithm to measure axial length. J Cataract Refract Surg 34:920–924. https://doi.org/10.1016/j.jcrs.2008.02.021

Article  PubMed  Google Scholar 

McAlinden C, Wang Q, Pesudovs K, Yang X, Bao F, Yu A, Lin S, Feng Y, Huang J (2015) Axial length measurement failure rates with the IOLMaster and Lenstar LS 900 in eyes with cataract. PLoS ONE 10:e0128929. https://doi.org/10.1371/journal.pone.0128929

CAS  Article  PubMed  PubMed Central  Google Scholar 

Srivannaboon S, Chirapapaisan C, Chonpimai P, Loket S (2015) Clinical comparison of a new swept-source optical coherence tomography-based optical biometer and a time-domain optical coherence tomography-based optical biometer. J Cataract Refract Surg 41:2224–2232. https://doi.org/10.1016/j.jcrs.2015.03.019

Article  PubMed  Google Scholar 

Kurian M, Negalur N, Das S, Puttaiah NK, Haria D, J TS, Thakkar MM (2016) Biometry with a new swept-source optical coherence tomography biometer: repeatability and agreement with an optical low-coherence reflectometry device. J Cataract Refract Surg 42:577–581. https://doi.org/10.1016/j.jcrs.2016.01.038

Article  PubMed  Google Scholar 

Akman A, Asena L, Güngör SG (2016) Evaluation and comparison of the new swept source OCT-based IOLMaster 700 with the IOLMaster 500. Br J Ophthalmol 100:1201–1205. https://doi.org/10.1136/bjophthalmol-2015-307779

Article  PubMed  Google Scholar 

Huang J, Chen H, Li Y, Chen Z, Gao R, Yu J, Zhao Y, Lu W, McAlinden C, Wang Q (2019) Comprehensive comparison of axial length measurement with three swept-source OCT-based biometers and partial coherence interferometry. J Refract Surg 35:115–120. https://doi.org/10.3928/1081597X-20190109-01

Article  PubMed  Google Scholar 

McAlinden C, Wang Q, Gao R, Zhao W, Yu A, Li Y, Guo Y, Huang J (2017) Axial length measurement failure rates with biometers using swept-source optical coherence tomography compared to partial-coherence interferometry and optical low-coherence interferometry. Am J Ophthalmol 173:64–69. https://doi.org/10.1016/j.ajo.2016.09.019

Article  PubMed  Google Scholar 

Ruíz-Mesa R, Aguilar-Córcoles S, Montés-Micó R, Tañá-Rivero P (2020) Ocular biometric repeatability using a new high-resolution swept-source optical coherence tomographer. Expert Rev Med Devices 17:591–597. https://doi.org/10.1080/17434440.2020.1772050

CAS  Article  PubMed  Google Scholar 

Schiano-Lomoriello D, Hoffer KJ, Abicca I, Savini G (2021) Repeatability of automated measurements by a new anterior segment optical coherence tomographer and biometer and agreement with standard devices. Sci Rep 11:983. https://doi.org/10.1038/s41598-020-79674-4

CAS  Article  PubMed  PubMed Central  Google Scholar 

Panthier C, Rouger H, Gozlan Y, Moran S, Gatinel D (2022) Comparative analysis of 2 biometers using swept-source OCT technology. J Cataract Refract Surg 48:26–31. https://doi.org/10.1097/j.jcrs.0000000000000704

Article  PubMed  Google Scholar 

Jr CL, Wolfe JK, Singer DM, Leske MC, Bullimore MA, Bailey IL, Friend J, Mccarthy D, Wu SY (1993) The Lens Opacities Classification System III. The Longitudinal Study of Cataract Study Group. Arch Ophthalmol 106:831–836

Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310

CAS  Article  Google Scholar 

Du YL, Wang G, Huang HC, Lin LY, Jin C, Liu LF, Liu XR, Zhang MZ (2019) Comparison of OA-2000 and IOL Master 500 using in cataract patients with high myopia. Int J Ophthalmol 12:844–847. https://doi.org/10.18240/ijo.2019.05.23

Article  PubMed  PubMed Central  Google Scholar 

Oh R, Oh JY, Choi HJ, Kim MK, Yoon CH (2021) Comparison of ocular biometric measurements in patients with cataract using three swept-source optical coherence tomography devices. BMC Ophthalmol 21:62. https://doi.org/10.1186/s12886-021-01826-5

Article  PubMed  PubMed Central  Google Scholar 

Zhu X, He W, Du Y, Lu Y (2017) Effect of fixation stability during biometry measurements on refractive prediction accuracy in highly myopic eyes. J Cataract Refract Surg 43:1157–1162. https://doi.org/10.1016/j.jcrs.2017.06.039

Article  PubMed  Google Scholar 

Freeman G, Pesudovs K (2005) The impact of cataract severity on measurement acquisition with the IOLMaster. Acta Ophthalmol Scand 83:439–442. https://doi.org/10.1111/j.1600-0420.2005.00473.x

Article  PubMed  Google Scholar 

Vasavada AR, Mamidipudi PR, Sharma PS (2004) Morphology of and visual performance with posterior subcapsular cataract. J Cataract Refract Surg 30:2097–2104. https://doi.org/10.1016/j.jcrs.2004.02.076

Article  PubMed  Google Scholar 

Brown NA (1993) The morphology of cataract and visual performance. Eye (Lond) 7(Pt 1):63–67. https://doi.org/10.1038/eye.1993.14

CAS  Article  Google Scholar 

McAlinden C, Bao F, Guo Y, Yu X, Lu W, Chen H, Wang Q, Huang J (2016) Agreement of anterior ocular biometric measurements with a new optical biometer and a Scheimpflug tomographer. J Cataract Refract Surg 42:679–684. https://doi.org/10.1016/j.jcrs.2016.01.043

Article  PubMed  Google Scholar 

Chan T, Yu M, Chiu V, Lai G, Leung C, Chan P (2021) Comparison of two novel swept-source optical coherence tomography devices to a partial coherence interferometry-based biometer. Sci Rep 11:14853. https://doi.org/10.1038/s41598-021-93999-8

CAS  Article  PubMed  PubMed Central  Google Scholar 

Ghaffari R, Mahmoudzadeh R, Mohammadi SS, Salabati M, Latifi G, Ghassemi H (2019) Assessing the validity of measurements of swept-source and partial coherence interferometry devices in cataract patients. Optom Vis Sci 96:745–750. https://doi.org/10.1097/OPX.0000000000001433

Article  PubMed  Google Scholar 

Reitblat O, Levy A, Kleinmann G, Assia EI (2018) Accuracy of intraocular lens power calculation using three optical biometry measurement devices: the OA-2000, Lenstar-LS900 and IOLMaster-500. Eye (Lond) 32:1244–1252. https://doi.org/10.1038/s41433-018-0063-x

Article  Google Scholar 

Olsen T (2007) Improved accuracy of intraocular lens power calculation with the Zeiss IOLMaster. Acta Ophthalmol Scand 85:84–87. https://doi.org/10.1111/j.1600-0420.2006.00774.x

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif