Genetics of circadian rhythms and sleep in human health and disease

Mohawk, J. A., Green, C. B. & Takahashi, J. S. Central and peripheral circadian clocks in mammals. Annu. Rev. Neurosci. 35, 445–462 (2012).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Dibner, C., Schibler, U. & Albrecht, U. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu. Rev. Physiol. 72, 517–549 (2010).

CAS  PubMed  Article  Google Scholar 

Borbély, A. A. A two process model of sleep regulation. Hum. Neurobiol. 1, 195–204 (1982).

PubMed  Google Scholar 

Buysse, D. J. Sleep health: can we define it? Does it matter? Sleep 37, 9–17 (2014).

PubMed  PubMed Central  Article  Google Scholar 

Duffy, J. F. et al. Circadian rhythm sleep–wake disorders: gaps and opportunities. Sleep 44, zsaa281 (2021).

PubMed  PubMed Central  Article  Google Scholar 

Chellappa, S. L., Vujovic, N., Williams, J. S. & Scheer, F. A. J. L. Impact of circadian disruption on cardiovascular function and disease. Trends Endocrinol. Metab. 30, 767–779 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Kecklund, G. & Axelsson, J. Health consequences of shift work and insufficient sleep. BMJ 355, i5210 (2016).

PubMed  Article  Google Scholar 

Rijo-Ferreira, F. & Takahashi, J. S. Genomics of circadian rhythms in health and disease. Genome Med. 11, 82 (2019).

PubMed  PubMed Central  Article  Google Scholar 

Allada, R., Cirelli, C. & Sehgal, A. Molecular mechanisms of sleep homeostasis in flies and mammals. Cold Spring Harb. Perspect. Biol. 9, a027730 (2017).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Deboer, T., Vansteensel, M. J., Détári, L. & Meijer, J. H. Sleep states alter activity of suprachiasmatic nucleus neurons. Nat. Neurosci. 6, 1086–1090 (2003).

CAS  PubMed  Article  Google Scholar 

Khalsa, S. B. S., Jewett, M. E., Cajochen, C. & Czeisler, C. A. A phase response curve to single bright light pulses in human subjects. J. Physiol. 549, 945–952 (2003).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Dijk, D. J. & Czeisler, C. A. Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves, and sleep spindle activity in humans. J. Neurosci. 15, 3526–3538 (1995).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hasan, S. et al. A human sleep homeostasis phenotype in mice expressing a primate-specific PER3 variable-number tandem-repeat coding-region polymorphism. FASEB J. 28, 2441–2454 (2014).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Möller-Levet, C. S. et al. Effects of insufficient sleep on circadian rhythmicity and expression amplitude of the human blood transcriptome. Proc. Natl Acad. Sci. USA 110, E1132–E1141 (2013).

PubMed  PubMed Central  Article  Google Scholar 

Takahashi, J. S., Hong, H.-K., Ko, C. H. & McDearmon, E. L. The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat. Rev. Genet. 9, 764–775 (2008).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Jones, S. E. et al. Genetic studies of accelerometer-based sleep measures yield new insights into human sleep behaviour. Nat. Commun. 10, 1585 (2019).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Dashti, H. S. et al. Genome-wide association study identifies genetic loci for self-reported habitual sleep duration supported by accelerometer-derived estimates. Nat. Commun. 10, 1100 (2019).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Doherty, A. et al. GWAS identifies 14 loci for device-measured physical activity and sleep duration. Nat. Commun. 9, 5257 (2018).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Duffy, J. F. & Dijk, D. J. Getting through to circadian oscillators: why use constant routines? J. Biol. Rhythms. 17, 4–13 (2002).

PubMed  Article  Google Scholar 

Wang, W. et al. Using Kleitman’s Forced Desynchrony protocol to assess the intrinsic period of circadian oscillators and estimate the contributions of the circadian pacemaker and the sleep-wake homeostat to physiology and behavior in clinical research. Nat. Protoc. (In Press, 2022).

Perez-Pozuelo, I. et al. The future of sleep health: a data-driven revolution in sleep science and medicine. npj Digit. Med. 3, 42 (2020).

PubMed  PubMed Central  Article  Google Scholar 

Ambrosius, U. et al. Heritability of sleep electroencephalogram. Biol. Psychiat. 64, 344–348 (2008).

PubMed  Article  Google Scholar 

De Gennaro, L. et al. The electroencephalographic fingerprint of sleep is genetically determined: a twin study. Ann. Neurol. 64, 455–460 (2008).

PubMed  Article  Google Scholar 

Vitaterna, M. H., Shimomura, K. & Jiang, P. Genetics of circadian rhythms. Neurol. Clin. 37, 487–504 (2019).

PubMed  PubMed Central  Article  Google Scholar 

Andreani, T. S., Itoh, T. Q., Yildirim, E., Hwangbo, D.-S. & Allada, R. Genetics of circadian rhythms. Sleep. Med. Clin. 10, 413–421 (2015).

PubMed  PubMed Central  Article  Google Scholar 

Roenneberg, T. & Merrow, M. Entrainment of the human circadian clock. Cold Spring Harb. Symp. Quant. Biol. 72, 293–299 (2007).

CAS  PubMed  Article  Google Scholar 

Archer, S. N. et al. A length polymorphism in the circadian clock gene Per3 is linked to delayed sleep phase syndrome and extreme diurnal preference. Sleep 26, 413–415 (2003).

PubMed  Article  Google Scholar 

Ebisawa, T. et al. Association of structural polymorphisms in the human period3 gene with delayed sleep phase syndrome. EMBO Rep. 2, 342–346 (2001).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Parsons, M. J. et al. Polymorphisms in the circadian expressed genes PER3 and ARNTL2 are associated with diurnal preference and GNβ3 with sleep measures. J. Sleep. Res. 23, 595–604 (2014).

PubMed  PubMed Central  Article  Google Scholar 

Hu, Y. et al. GWAS of 89,283 individuals identifies genetic variants associated with self-reporting of being a morning person. Nat. Commun. 7, 10448 (2016).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Jones, S. E. et al. Genome-wide association analyses in 128,266 individuals identifies new morningness and sleep duration loci. PLoS Genet. 12, e1006125 (2016).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Lane, J. M. et al. Genome-wide association analysis identifies novel loci for chronotype in 100,420 individuals from the UK Biobank. Nat. Commun. 7, 10889 (2016).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Jones, S. E. et al. Genome-wide association analyses of chronotype in 697,828 individuals provides insights into circadian rhythms. Nat. Commun. 10, 343 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Ferguson, A. et al. Genome-wide association study of circadian rhythmicity in 71,500 UK biobank participants and polygenic association with mood instability. eBioMedicine 35, 279–287 (2018).

PubMed  PubMed Central  Article  Google Scholar 

Chang, A.-M. et al. Chronotype genetic variant in PER2 is associated with intrinsic circadian period in humans. Sci. Rep. 9, 5350 (2019).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Lee, D. A. et al. Evolutionarily conserved regulation of sleep by epidermal growth factor receptor signaling. Sci. Adv. 5, eaax4249 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Gaspar, L. et al. The genomic landscape of human cellular circadian variation points to a novel role for the signalosome. eLife 6, e24994 (2017).

PubMed  PubMed Central  Article  Google Scholar 

He, Y. et al. The transcriptional repressor DEC2 regulates sleep length in mammals. Science 325, 866–870 (2009). This paper described the first gene for natural short sleep discovered using a human genetic family-based approach.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hirano, A. et al. DEC2 modulates orexin expression and regulates sleep. Proc. Natl Acad. Sci. USA 115, 3434–3439 (2018).

CAS  PubMed  PubMed Central  Article  Google S

留言 (0)

沒有登入
gif