ITGAL infers adverse prognosis and correlates with immunity in acute myeloid leukemia

De Kouchkovsky I, Abdul-Hay M. Acute myeloid leukemia: a comprehensive review and 2016 update. Blood Cancer J. 2016;6(7): e441.

Article  Google Scholar 

Stahl M, Kim TK, Zeidan AM. Update on acute myeloid leukemia stem cells: new discoveries and therapeutic opportunities. World J Stem Cells. 2016;8(10):316–31.

Article  Google Scholar 

Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, Potter NE, Heuser M, Thol F, Bolli N, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;374(23):2209–21.

CAS  Article  Google Scholar 

Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell. 2002;110(6):673–87.

CAS  Article  Google Scholar 

Campbell ID, Humphries MJ. Integrin structure, activation, and interactions. Cold Spring Harb Perspect Biol. 2011;3(3):a004994.

Article  Google Scholar 

Corbi AL. Chromosomal location of the genes encoding the leukocyte adhesion receptors LFA-1, Mac-1 AND p150,95 Identification of a gene cluster involved in cell adhesion. J Exp Med. 1988;167(5):1597–607.

CAS  Article  Google Scholar 

Lu Q, Ray D, Gutsch D, Richardson B. Effect of DNA methylation and chromatin structure on ITGAL expression. Blood. 2002;99(12):4503–8.

CAS  Article  Google Scholar 

de Lange KM, Moutsianas L, Lee JC, Lamb CA, Luo Y, Kennedy NA, Jostins L, Rice DL, Gutierrez-Achury J, Ji SG, et al. Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease. Nat Genet. 2017;49(2):256–61.

Article  Google Scholar 

Carson KR, Focosi D, Major EO, Petrini M, Richey EA, West DP, Bennett CL. Monoclonal antibody-associated progressive multifocal leucoencephalopathy in patients treated with rituximab, natalizumab, and efalizumab: a review from the Research on Adverse Drug Events and Reports (RADAR) Project. Lancet Oncol. 2009;10(8):816–24.

CAS  Article  Google Scholar 

Smith CM, Proulx MK, Lai R, Kiritsy MC, Bell TA, Hock P, Pardo-Manuel de Villena F, Ferris MT, Baker RE, Behar SM, et al. Functionally overlapping variants control tuberculosis susceptibility in collaborative cross mice. Bio. 2019;10(6):e02791.

CAS  Google Scholar 

De Andrade CA, Chatterjee J, Cobb O, Sanapala S, Scheaffer S, Guo X, Dahiya S, Gutmann DH. RNA sequence analysis reveals ITGAL/CD11A as a stromal regulator of murine low-grade glioma growth. Neuro Oncol. 2022;24(1):14–26.

Article  Google Scholar 

Zhao X, Lei Y, Li G, Cheng Y, Yang H, Xie L, Long H, Jiang R. Integrative analysis of cancer driver genes in prostate adenocarcinoma. Mol Med Rep. 2019;19(4):2707–15.

CAS  PubMed  PubMed Central  Google Scholar 

Xu Q, Song A, Xie Q. The integrated analyses of driver genes identify key biomarkers in thyroid cancer. Technol Cancer Res Treat. 2020;19:1533033820940440.

CAS  PubMed  PubMed Central  Google Scholar 

Ji C, Li Y, Yang K, Gao Y, Sha Y, Xiao D, Liang X, Cheng Z. Identification of four genes associated with cutaneous metastatic melanoma. Open Med. 2020;15(1):531–9.

CAS  Article  Google Scholar 

Piccolomo A, Schifone CP, Strafella V, Specchia G, Musto P, Albano F. Immunomodulatory drugs in acute myeloid leukemia treatment. Cancers. 2020;12(9):2528.

CAS  Article  Google Scholar 

Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. 2014;4(Suppl 4):S11.

Article  Google Scholar 

Li R, Zhang L, Qin Z, Wei Y, Deng Z, Zhu C, Tang J, Ma L. High LINC00536 expression promotes tumor progression and poor prognosis in bladder cancer. Exp Cell Res. 2019;378(1):32–40.

CAS  Article  Google Scholar 

Isidori A, Cerchione C, Daver N, DiNardo C, Garcia-Manero G, Konopleva M, Jabbour E, Ravandi F, Kadia T, Burguera AF, et al. Immunotherapy in acute myeloid leukemia: where we stand. Front Oncol. 2021;11: 656218.

Article  Google Scholar 

Lin JX, Leonard WJ. Fine-tuning cytokine signals. Annu Rev Immunol. 2019;37:295–324.

CAS  Article  Google Scholar 

Propper DJ, Balkwill FR. Harnessing cytokines and chemokines for cancer therapy. Nat Rev Clin Oncol. 2022;19(4):237–53.

CAS  Article  Google Scholar 

Aldinucci D, Borghese C, Casagrande N. The CCL5/CCR5 axis in cancer progression. Cancers. 2020;12(7):1765.

CAS  Article  Google Scholar 

Xu Y, Mou J, Wang Y, Zhou W, Rao Q, Xing H, Tian Z, Tang K, Wang M, Wang J. Regulatory T cells promote the stemness of leukemia stem cells through IL10 cytokine-related signaling pathway. Leukemia. 2022;36(2):403–15.

CAS  Article  Google Scholar 

Johnson DE, O’Keefe RA, Grandis JR. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol. 2018;15(4):234–48.

CAS  Article  Google Scholar 

Huang R, Wang S, Wang N, Zheng Y, Zhou J, Yang B, Wang X, Zhang J, Guo L, Wang S, et al. CCL5 derived from tumor-associated macrophages promotes prostate cancer stem cells and metastasis via activating beta-catenin/STAT3 signaling. Cell Death Dis. 2020;11(4):234.

CAS  Article  Google Scholar 

Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009;9(3):162–74.

CAS  Article  Google Scholar 

Sinha P, Clements VK, Bunt SK, Albelda SM, Ostrand-Rosenberg S. Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. J Immunol. 2007;179(2):977–83.

CAS  Article  Google Scholar 

Huang B, Pan PY, Li Q, Sato AI, Levy DE, Bromberg J, Divino CM, Chen SH. Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Can Res. 2006;66(2):1123–31.

CAS  Article  Google Scholar 

Tanaka A, Sakaguchi S. Regulatory T cells in cancer immunotherapy. Cell Res. 2017;27(1):109–18.

CAS  Article  Google Scholar 

Shang B, Liu Y, Jiang SJ, Liu Y. Prognostic value of tumor-infiltrating FoxP3+ regulatory T cells in cancers: a systematic review and meta-analysis. Sci Rep. 2015;5:15179.

CAS  Article  Google Scholar 

Yin Z, Li C, Wang J, Xue L. Myeloid-derived suppressor cells: roles in the tumor microenvironment and tumor radiotherapy. Int J Cancer. 2019;144(5):933–46.

CAS  Article  Google Scholar 

Raghavan JV, Ganesh RA, Sonpatki P, Naik D, John AE, Arunachalam P, Shah D, Hari PS, Lakshmikantha A, Pillai S, et al. Immuno-phenotyping of IDH-mutant grade 3 astrocytoma and IDH-wildtype glioblastoma reveals specific differences in cells of myeloid origin. Oncoimmunology. 2021;10(1):1957215.

Article  Google Scholar 

Zhao Y, Wu T, Shao S, Shi B, Zhao Y. Phenotype, development, and biological function of myeloid-derived suppressor cells. Oncoimmunology. 2016;5(2): e1004983.

Article  Google Scholar 

Grauers Wiktorin H, Nilsson MS, Kiffin R, Sander FE, Lenox B, Rydstrom A, Hellstrand K, Martner A. Histamine targets myeloid-derived suppressor cells and improves the anti-tumor efficacy of PD-1/PD-L1 checkpoint blockade. Cancer Immunol Immunother. 2019;68(2):163–74.

CAS  Article  Google Scholar 

Kotsakis A, Harasymczuk M, Schilling B, Georgoulias V, Argiris A, Whiteside TL. Myeloid-derived suppressor cell measurements in fresh and cryopreserved blood samples. J Immunol Methods. 2012;381(1–2):14–22.

CAS  Article  Google Scholar 

Blattner C, Fleming V, Weber R, Himmelhan B, Altevogt P, Gebhardt C, Schulze TJ, Razon H, Hawila E, Wildbaum G, et al. CCR5(+) myeloid-derived suppressor cells are enriched and activated in melanoma lesions. Cancer Res. 2018;78(1):157–67.

CAS  Article  Google Scholar 

Weber R, Riester Z, Huser L, Sticht C, Siebenmorgen A, Groth C, Hu X, Altevogt P, Utikal JS, Umansky V. IL-6 regulates CCR5 expression and immunosuppressive capacity of MDSC in murine melanoma. J Immunother Cancer. 2020;8(2):e000949.

Article  Google Scholar 

留言 (0)

沒有登入
gif