Multimodal targeting of glioma with functionalized nanoparticles

Lin S, Xu H, Zhang A, Ni Y, Xu Y, Meng T, et al. Prognosis analysis and validation of m6A signature and tumor immune microenvironment in glioma. Front Oncol. 2020;10: 541401.

PubMed  PubMed Central  Article  Google Scholar 

Davis ME. Glioblastoma: overview of disease and treatment. Clin J Oncol Nurs. 2016;20(5):S2.

PubMed  PubMed Central  Article  Google Scholar 

Chen B, Chen C, Zhang Y, Xu J. Recent incidence trend of elderly patients with glioblastoma in the United States, 2000–2017. BMC Cancer. 2021;21(1):1–10.

CAS  Article  Google Scholar 

Rushing EJ. WHO classification of tumors of the nervous system: preview of the upcoming 5th edition. memo-Mag Eur Med Oncol. 2021;14(2):188–91.

Google Scholar 

Louis DN, Perry A, Reifenberger G, Von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131(6):803–20.

PubMed  Article  Google Scholar 

Gao H. Progress and perspectives on targeting nanoparticles for brain drug delivery. Acta Pharm Sin B. 2016;6(4):268–86.

PubMed  PubMed Central  Article  Google Scholar 

Koshy M, Villano JL, Dolecek TA, Howard A, Mahmood U, Chmura SJ, et al. Improved survival time trends for glioblastoma using the SEER 17 population-based registries. J Neurooncol. 2012;107(1):207–12.

PubMed  Article  Google Scholar 

Perus LJ, Walsh LA. Microenvironmental heterogeneity in brain malignancies. Front Immunol. 2019;10:2294.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hung AL, Garzon-Muvdi T, Lim M. Biomarkers and immunotherapeutic targets in glioblastoma. World Neurosurg. 2017;102:494–506.

PubMed  Article  Google Scholar 

Davis M. GBM treatment overview. Clin J Oncol Nurs. 2016;20:1–14.

Article  Google Scholar 

Ruan S, Zhou Y, Jiang X, Gao H. Rethinking CRITID procedure of brain targeting drug delivery: circulation, blood brain barrier recognition, intracellular transport, diseased cell targeting, internalization, and drug release. Adv Sci. 2021;8(9):2004025.

CAS  Article  Google Scholar 

Gao H. Perspectives on dual targeting delivery systems for brain tumors. J Neuroimmune Pharmacol. 2017;12(1):6–16 (Epub 2016/06/09. eng).

PubMed  Article  Google Scholar 

Han L, Jiang C. Evolution of blood–brain barrier in brain diseases and related systemic nanoscale brain-targeting drug delivery strategies. Acta Pharm Sin B. 2021;11(8):2306–25 (Epub 2021/09/16. eng).

CAS  PubMed  Article  Google Scholar 

Zhao M, van Straten D, Broekman ML, Préat V, Schiffelers RM. Nanocarrier-based drug combination therapy for glioblastoma. Theranostics. 2020;10(3):1355.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Goullé J-P, Couvreur P, Grangeot-Keros L. About the alleged toxicity of aluminium-based adjuvants in vaccines: all published studies should be taken into account. Int J Pharm. 2021;602: 120656.

PubMed  Article  CAS  Google Scholar 

Caro C, Avasthi A, Paez-Muñoz JM, Leal MP, García-Martín ML. Passive targeting of high-grade gliomas via the EPR effect: a closed path for metallic nanoparticles? Biomater Sci. 2021;9(23):7984–95.

CAS  PubMed  Article  Google Scholar 

Huo T, Yang Y, Qian M, Jiang H, Du Y, Zhang X, et al. Versatile hollow COF nanospheres via manipulating transferrin corona for precise glioma-targeted drug delivery. Biomaterials. 2020;260: 120305.

CAS  PubMed  Article  Google Scholar 

Zhang Z, Guan J, Jiang Z, Yang Y, Liu J, Hua W, et al. Brain-targeted drug delivery by manipulating protein corona functions. Nat Commun. 2019;10(1):1–11.

Article  CAS  Google Scholar 

Francia V, Schiffelers RM, Cullis PR, Witzigmann D. The biomolecular corona of lipid nanoparticles for gene therapy. Bioconjug Chem. 2020;31(9):2046–59.

CAS  PubMed  Article  Google Scholar 

Mahmoudi M. Antibody orientation determines corona mistargeting capability. Nat Nanotechnol. 2018;13(9):775–6.

CAS  PubMed  Article  Google Scholar 

Zhou J, Patel TR, Sirianni RW, Strohbehn G, Zheng M-Q, Duong N, et al. Highly penetrative, drug-loaded nanocarriers improve treatment of glioblastoma. Proc Natl Acad Sci. 2013;110(29):11751–6.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Zhang P, Hu L, Yin Q, Feng L, Li Y. Transferrin-modified c [RGDfK]-paclitaxel loaded hybrid micelle for sequential blood–brain barrier penetration and glioma targeting therapy. Mol Pharm. 2012;9(6):1590–8.

CAS  PubMed  Article  Google Scholar 

Zarebkohan A, Najafi F, Moghimi HR, Hemmati M, Deevband MR, Kazemi B. Synthesis and characterization of a PAMAM dendrimer nanocarrier functionalized by SRL peptide for targeted gene delivery to the brain. Eur J Pharm Sci. 2015;78:19–30.

CAS  PubMed  Article  Google Scholar 

Wei X, Gao J, Zhan C, Xie C, Chai Z, Ran D, et al. Liposome-based glioma targeted drug delivery enabled by stable peptide ligands. J Control Release. 2015;218:13–21.

CAS  PubMed  Article  Google Scholar 

Qu J, Zhang L, Chen Z, Mao G, Gao Z, Lai X, et al. Nanostructured lipid carriers, solid lipid nanoparticles, and polymeric nanoparticles: which kind of drug delivery system is better for glioblastoma chemotherapy? Drug Deliv. 2016;23(9):3408–16.

CAS  PubMed  Article  Google Scholar 

Sonali MKV, Singh RP, Agrawal P, Mehata AK, Datta MarotiPawde N, Sonkar R, et al. Nanotheranostics: emerging strategies for early diagnosis and therapy of brain cancer. Nanotheranostics. 2018;2(1):70.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Rosenblum D, Joshi N, Tao W, Karp JM, Peer D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat Commun. 2018;9(1):1–12.

Article  CAS  Google Scholar 

England CG, Im H-J, Feng L, Chen F, Graves SA, Hernandez R, et al. Re-assessing the enhanced permeability and retention effect in peripheral arterial disease using radiolabeled long circulating nanoparticles. Biomaterials. 2016;100:101–9.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Senapati S, Mahanta AK, Kumar S, Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther. 2018;3(1):1–19.

CAS  Article  Google Scholar 

Caffo M, Cardali SM, Fazzari E, Barresi V, Caruso G. Nanoparticles drug-delivery systems and antiangiogenic approaches in the treatment of gliomas. Glioma. 2018;1(6):183.

Article  Google Scholar 

Betzer O, Shilo M, Opochinsky R, Barnoy E, Motiei M, Okun E, et al. The effect of nanoparticle size on the ability to cross the blood–brain barrier: an in vivo study. Nanomedicine. 2017;12(13):1533–46.

CAS  PubMed  Article  Google Scholar 

Ceña V, Játiva P. Nanoparticle crossing of blood–brain barrier: a road to new therapeutic approaches to central nervous system diseases. Future Med. 2018;13(13):1513–6.

Google Scholar 

Ortiz R, Cabeza L, Perazzoli G, Jimenez-Lopez J, García-Pinel B, Melguizo C, et al. Nanoformulations for glioblastoma multiforme: a new hope for treatment. Future Med Chem. 2019;11(18):2461–82.

Article  CAS  Google Scholar 

Zhang Y, Fu X, Jia J, Wikerholmen T, Xi K, Kong Y, et al. Glioblastoma therapy using codelivery of cisplatin and glutathione peroxidase targeting siRNA from iron oxide nanoparticles. ACS Appl Mater Interfaces. 2020;12(39):43408–21.

CAS  PubMed  Article  Google Scholar 

Afzalipour R, Khoei S, Khoee S, Shirvalilou S, Jamali Raoufi N, Motevalian M, et al. Dual-targeting temozolomide loaded in folate-conjugated magnetic triblock copolymer nanoparticles to improve the therapeutic efficiency of rat brain gliomas. ACS Biomater Sci Eng. 2019;5(11):6000–11.

CAS  PubMed  Article  Google Scholar 

Kuo Y-C, Lee C-H. Dual targeting of solid lipid nanoparticles grafted with 83-14 MAb and anti-EGF receptor for malignant brain tumor therapy. Life Sci. 2016;146:222–31.

CAS  PubMed  Article  Google Scholar 

Song P, Zhao X, Xiao S. Application prospect of peptide-modified nano targeting drug delivery system combined with PD-1/PD-L1 based immune checkpoint blockade in glioblastoma. Int J Pharm. 2020;589: 119865.

CAS  PubMed  Article  Google Scholar 

Aravind A, Veeranarayanan S, Poulose AC, Nair R, Nagaoka Y, Yoshida Y, et al. Aptamer-functionalized silica nanoparticles for targeted cancer therapy. BioNanoScience. 2012;2(1):1–8.

Article  Google Scholar 

Schuemann J, Bagley AF, Berbeco R, Bromma K, Butterworth KT, Byrne HL, et al. Roadmap for metal nanoparticles in radiation therapy: current status, translational challenges, and future directions. Phys Med Biol. 2020;65(21):21RM02.

CAS  PubMed  Article  Google Scholar 

Zhao W, Yu X, Peng S, Luo Y, Li J, Lu L. Construction of nanomaterials as contrast agents or probes for glioma imaging. J Nanobiotechnol. 2021;19(1):1–31.

CAS  Article  Google Scholar 

Pang H-H, Chen P-Y, Wei K-C, Huang C-W, Shiue Y-L, Huang C-Y, et al. Convection-enhanced delivery of a virus-like nanotherapeutic agent with dual-modal imaging for besiegement and eradication of brain tumors. Theranostics. 2019;9(6):1752.

CAS 

留言 (0)

沒有登入
gif