Systemic IL-27 administration prevents abscess formation and osteolysis via local neutrophil recruitment and activation

Schwarz, E. M. et al. 2018 International Consensus Meeting on musculoskeletal infection: research priorities from the general assembly questions. J. Orthop. Res. 37, 997–1006 (2019).

PubMed  Article  Google Scholar 

Tande, A. J. & Patel, R. Prosthetic joint infection. Clin. Microbiol Rev. 27, 302–345 (2014).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Stulberg, J. J. et al. Adherence to surgical care improvement project measures and the association with postoperative infections. JAMA 303, 2479–2485 (2010).

CAS  PubMed  Article  Google Scholar 

Masters, E. A. et al. Skeletal infections: microbial pathogenesis, immunity and clinical management. Nat. Rev. Microbiol. 20, 385–400 (2022). https://doi.org/10.1038/s41579-022-00686-0.

Kates, S. L. & Tornetta, P. 3rd Commentary on secondary fracture prevention: consensus clinical recommendations from a multistakeholder coalition originally published in the Journal of Bone and Mineral Research. J. Orthop. Trauma 34, 221 (2020).

PubMed  Article  Google Scholar 

Goodson, K. M. et al. Streamlining hospital treatment of prosthetic joint infection. J. Arthroplast. 35, S63–S68 (2020).

Article  Google Scholar 

Depypere, M. et al. Pathogenesis and management of fracture-related infection. Clin. Microbiol Infect. 26, 572–578 (2020).

CAS  PubMed  Article  Google Scholar 

Govaert, G. A. M. et al. Diagnosing fracture-related infection: current concepts and recommendations. J. Orthop. Trauma 34, 8–17 (2020).

PubMed  Article  Google Scholar 

Kandel, C. E. et al. Predictors of treatment failure for hip and knee prosthetic joint infections in the setting of 1- and 2-stage exchange arthroplasty: a multicenter retrospective cohort. Open Forum Infect. Dis. 6, ofz452 (2019).

PubMed  PubMed Central  Article  Google Scholar 

Masters, E. A. et al. Evolving concepts in bone infection: redefining “biofilm”, “acute vs. chronic osteomyelitis”, “the immune proteome” and “local antibiotic therapy”. Bone Res. 7, 20 (2019).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Kaplan, S. L. Recent lessons for the management of bone and joint infections. J. Infect. 68, S51–S56 (2014).

PubMed  Article  Google Scholar 

Assis, L. M., Nedeljkovic, M. & Dessen, A. New strategies for targeting and treatment of multi-drug resistant Staphylococcus aureus. Drug Resist. Updat. 31, 1–14 (2017).

PubMed  Article  Google Scholar 

Weigelt, J. A. et al. Surgical site infections: causative pathogens and associated outcomes. Am. J. Infect. Control 38, 112–120 (2010).

PubMed  Article  Google Scholar 

van Hal, S. J. et al. Predictors of mortality in Staphylococcus aureus Bacteremia. Clin. Microbiol. Rev. 25, 362–386 (2012).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Wong, H. R., Lindsell, C. J., Lahni, P., Hart, K. W. & Gibot, S. Interleukin 27 as a sepsis diagnostic biomarker in critically ill adults. Shock 40, 382–386 (2013).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Wong, H. R., Liu, K. D., Kangelaris, K. N., Lahni, P. & Calfee, C. S. Performance of interleukin-27 as a sepsis diagnostic biomarker in critically ill adults. J. Crit. Care 29, 718–722 (2014).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hanna, W. J., Berrens, Z., Langner, T., Lahni, P. & Wong, H. R. Interleukin-27: a novel biomarker in predicting bacterial infection among the critically ill. Crit. Care 19, 378 (2015).

PubMed  PubMed Central  Article  Google Scholar 

He, Y. et al. Multiplex cytokine profiling identifies interleukin-27 as a novel biomarker for neonatal early onset sepsis. Shock 47, 140–147 (2017).

CAS  PubMed  Article  Google Scholar 

Jacobs, L. et al. Interleukin-27 as a candidate diagnostic biomarker for bacterial infection in immunocompromised pediatric patients. PLoS One 13, e0207620 (2018).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Wong HR, C. N. et al. Interleukin-27 is a novel candidate diagnostic biomarker for bacterial infection in critically ill children. Crit. Care 16, R213 (2012).

PubMed  PubMed Central  Article  Google Scholar 

Yoshida, H. & Hunter, C. A. The immunobiology of interleukin-27. Annu Rev. Immunol. 33, 417–443 (2015).

CAS  PubMed  Article  Google Scholar 

Hunter, C. A. New IL-12-family members: IL-23 and IL-27, cytokines with divergent functions. Nat. Rev. Immunol. 5, 521–531 (2005).

CAS  PubMed  Article  Google Scholar 

Morita, Y., Masters, E. A., Schwarz, E. M. & Muthukrishnan, G. Interleukin-27 and its diverse effects on bacterial infections. Front. Immunol. 12, 678515 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Diveu, C. et al. IL-27 blocks RORc expression to inhibit lineage commitment of Th17 cells. J. Immunol. 182, 5748–5756 (2009).

CAS  PubMed  Article  Google Scholar 

Hall, A. O. et al. The cytokines interleukin 27 and interferon-gamma promote distinct Treg cell populations required to limit infection-induced pathology. Immunity 37, 511–523 (2012).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Cao, J. et al. IL-27 controls sepsis-induced impairment of lung antibacterial host defence. Thorax 69, 926–937 (2014).

PubMed  Article  Google Scholar 

Robinson, K. M. et al. The role of IL-27 in susceptibility to post-influenza Staphylococcus aureus pneumonia. Respir. Res. 16, 10 (2015).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Seita, J. et al. Interleukin-27 directly induces differentiation in hematopoietic stem cells. Blood 111, 1903–1912 (2008).

CAS  PubMed  Article  Google Scholar 

Pflanz, S. et al. WSX-1 and glycoprotein 130 constitute a signal-transducing receptor for IL-27. J. Immunol. 172, 2225–2231 (2004).

CAS  PubMed  Article  Google Scholar 

Guzzo, C., Che Mat, N. F. & Gee, K. Interleukin-27 induces a STAT1/3- and NF-kappaB-dependent proinflammatory cytokine profile in human monocytes. J. Biol. Chem. 285, 24404–24411 (2010).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Lucas, S., Ghilardi, N., Li, J. & de Sauvage, F. J. IL-27 regulates IL-12 responsiveness of naive CD4+ T cells through Stat1-dependent and -independent mechanisms. Proc. Natl. Acad. Sci. USA 100, 15047–15052 (2003).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Nishitani, K. et al. Quantifying the natural history of biofilm formation in vivo during the establishment of chronic implant-associated Staphylococcus aureus osteomyelitis in mice to identify critical pathogen and host factors. J. Orthop. Res. 33, 1311–1319 (2015).

PubMed  PubMed Central  Article  Google Scholar 

Masters, E. A. et al. Identification of Penicillin Binding Protein 4 (PBP4) as a critical factor for Staphylococcus aureus bone invasion during osteomyelitis in mice. PLoS Pathog. 16, e1008988 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Nishitani, K. et al. IsdB antibody-mediated sepsis following S. aureus surgical site infection. JCI Insight 5, e141164 (2020).

Masters, E. A. et al. Distinct vasculotropic versus osteotropic features of S. agalactiae versus S. aureus implant-associated bone infection in mice. J. Orthop. Res. 39, 389–401 (2021).

CAS  PubMed  Article  Google Scholar 

Varrone, J. J. et al. Passive immunization with anti-glucosaminidase monoclonal antibodies protects mice from implant-associated osteomyelitis by mediating opsonophagocytosis of Staphylococcus aureus megaclusters. J. Orthop. Res. 32, 1389–1396 (2014).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Frangieh, M. et al. IL-27: an endogenous constitutive repressor of human monocytes. Clin. Immunol. 217, 108498 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Ivanov, I. I. et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper. Cells Cell 126, 1121–1133 (2006).

CAS  PubMed  Article  Google Scholar 

Fan, J. et al. IL-27 is elevated in sepsis with acute hepatic injury and promotes hepatic damage and inflammation in the CLP model. Cytokine 127, 154936 (2020).

CAS  PubMed  Article  Google Scholar 

Ellington, J. K. et al. Intracellular Staphylococcus aureus. A mechanism for the indolence of osteomyelitis. J. Bone Jt. Surg. Br. 85, 918–921 (2003).

CAS  Article  Google Scholar 

Ellington, J. K. et al. Intracellular Staphylococcus aureus and antibiotic resistance: implications for treatment of staphylococcal osteomyelitis. J. Orthop. Res. 24, 87–93 (2006).

PubMed 

留言 (0)

沒有登入
gif