Inhibition of hypothalamic FTO activates STAT3 signal through ERK1/2 associated with reductions in food intake and body weight

Hu F. · Yan H.-J. · Gao C.-X. · Sun W.-W. · Long Y.-S.

Log in to MyKarger to check if you already have access to this content.

Buy FullText & PDF Unlimited re-access via MyKarger Unrestricted printing, no saving restrictions for personal use
read more

CHF 38.00 *
EUR 35.00 *
USD 39.00 *

Select

KAB

Buy a Karger Article Bundle (KAB) and profit from a discount!

If you would like to redeem your KAB credit, please log in.

Save over 20% compared to the individual article price.

Learn more

Access via DeepDyve Unlimited fulltext viewing Of this article Organize, annotate And mark up articles Printing And downloading restrictions apply

Select

Subscribe Access to all articles of the subscribed year(s) guaranteed for 5 years Unlimited re-access via Subscriber Login or MyKarger Unrestricted printing, no saving restrictions for personal use read more

Subcription rates

Select

* The final prices may differ from the prices shown due to specifics of VAT rules.

Article / Publication Details Abstract

Introduction: Fat mass and obesity associated (FTO) gene is strongly associated with obesity which brings to a major health threat. Altered expression of its encoded protein FTO in the hypothalamus has been identified to contribute to central control of appetite and body weight. However, its molecular mechanisms remain elusive. Methods: Mouse hypothalamic POMC cell line N43/5 was treated with FTO inhibitor rhein, FTO shRNA or extracellular signal-regulated kinase 1/2 (ERK1/2) inhibitor U0126 to inhibit FTO or ERK1/2. Rhein and U0126 were injected into lateral ventricle of the mice by intracerebroventricular cannulation. Western blotting and immunofluorescent assays were performed to monitor protein level. Results: This study identified that inhibition of FTO in N43/5 cells led to phosphorylation of signal transducer and activator of transcription 3 (STAT3) at S727 site and induced p-STAT3-S727 nuclear translocation. We further showed that FTO inhibition promoted phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2); and specific inhibition of ERK1/2 signaling by U0126 could abolish the effect of FTO inhibition on STAT3-S727 phosphorylation and nuclear translocation. Furthermore, we found that inhibition of hypothalamic FTO promoted STAT3-S727 phosphorylation in the hypothalamic arcuate nucleus, and the mice showed reductions in food intake and body weight. In addition, inhibition of hypothalamic ERK1/2 could abolish the effects of FTO inhibition on STAT3-S727 phosphorylation, reductions of food intake and body weight. Conclusion: our in-vitro and in-vivo data suggest that the inhibition of hypothalamic FTO could activate STAT3 through ERK1/2, which is potentially associated with reductions in food intake and body weight.

S. Karger AG, Basel

Article / Publication Details Copyright / Drug Dosage / Disclaimer Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

留言 (0)

沒有登入
gif