Regulation, functions and transmission of bivalent chromatin during mammalian development

Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).

CAS  Article  PubMed  Google Scholar 

Piunti, A. & Shilatifard, A. Epigenetic balance of gene expression by Polycomb and COMPASS families. Science 352, aad9780 (2016).

Article  CAS  PubMed  Google Scholar 

Azuara, V. et al. Chromatin signatures of pluripotent cell lines. Nat. Cell Biol. 8, 532–538 (2006).

CAS  Article  PubMed  Google Scholar 

Mikkelsen, T. S. et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560 (2007).

CAS  PubMed Central  Article  PubMed  Google Scholar 

Zhao, X. D. et al. Whole-genome mapping of histone H3 Lys4 and 27 trimethylations reveals distinct genomic compartments in human embryonic stem cells. Cell Stem Cell 1, 286–298 (2007).

CAS  Article  PubMed  Google Scholar 

Pan, G. et al. Whole-genome analysis of histone H3 lysine 4 and lysine 27 methylation in human embryonic stem cells. Cell Stem Cell 1, 299–312 (2007).

CAS  Article  PubMed  Google Scholar 

Rugg-Gunn, P. J., Cox, B. J., Ralston, A. & Rossant, J. Distinct histone modifications in stem cell lines and tissue lineages from the early mouse embryo. Proc. Natl Acad. Sci. USA 107, 10783–10790 (2010).

CAS  PubMed Central  Article  PubMed  Google Scholar 

Zheng, H. et al. Resetting epigenetic memory by reprogramming of histone modifications in mammals. Mol. Cell 63, 1066–1079 (2016).

CAS  Article  PubMed  Google Scholar 

Xiang, Y. et al. Epigenomic analysis of gastrulation identifies a unique chromatin state for primed pluripotency. Nat. Genet. 52, 95–105 (2020).

CAS  Article  PubMed  Google Scholar 

Liu, X. et al. Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation embryos. Nature 537, 558–562 (2016).

CAS  Article  PubMed  Google Scholar 

Sachs, M. et al. Bivalent chromatin marks developmental regulatory genes in the mouse embryonic germline in vivo. Cell Rep. 3, 1777–1784 (2013).

CAS  PubMed Central  Article  PubMed  Google Scholar 

Ng, J.-H. et al. In vivo epigenomic profiling of germ cells reveals germ cell molecular signatures. Dev. Cell 24, 324–333 (2013).

CAS  Article  PubMed  Google Scholar 

Lesch, B. J., Dokshin, G. A., Young, R. A., McCarrey, J. R. & Page, D. C. A set of genes critical to development is epigenetically poised in mouse germ cells from fetal stages through completion of meiosis. Proc. Natl Acad. Sci. USA 110, 16061–16066 (2013).

CAS  PubMed Central  Article  PubMed  Google Scholar 

Mu, W., Starmer, J., Fedoriw, A. M., Yee, D. & Magnuson, T. Repression of the soma-specific transcriptome by Polycomb-repressive complex 2 promotes male germ cell development. Gene Dev. 28, 2056–2069 (2014).

CAS  PubMed Central  Article  PubMed  Google Scholar 

Roh, T.-Y., Cuddapah, S., Cui, K. & Zhao, K. The genomic landscape of histone modifications in human T cells. Proc. Natl Acad. Sci. USA 103, 15782–15787 (2006).

CAS  PubMed Central  Article  PubMed  Google Scholar 

Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007).

CAS  Article  PubMed  Google Scholar 

Voigt, P. et al. Asymmetrically modified nucleosomes. Cell 151, 181–193 (2012).

CAS  PubMed Central  Article  PubMed  Google Scholar 

Sen, S., Block, K. F., Pasini, A., Baylin, S. B. & Easwaran, H. Genome-wide positioning of bivalent mononucleosomes. BMC Med. Genomics 9, 60 (2016).

PubMed Central  Article  CAS  PubMed  Google Scholar 

Voigt, P., Tee, W.-W. & Reinberg, D. A double take on bivalent promoters. Gene Dev. 27, 1318–1338 (2013).

CAS  PubMed Central  Article  PubMed  Google Scholar 

Lesch, B. J., Silber, S. J., McCarrey, J. R. & Page, D. C. Parallel evolution of male germline epigenetic poising and somatic development in animals. Nat. Genet. 48, 888–894 (2016).

CAS  Article  PubMed  Google Scholar 

Dattani, A. et al. Epigenetic analyses of planarian stem cells demonstrate conservation of bivalent histone modifications in animal stem cells. Genome Res. 28, 1543–1554 (2018).

CAS  PubMed Central  Article  PubMed  Google Scholar 

Vastenhouw, N. L. et al. Chromatin signature of embryonic pluripotency is established during genome activation. Nature 464, 922–926 (2010).

CAS  PubMed Central  Article  PubMed  Google Scholar 

Kang, H. et al. Bivalent complexes of PRC1 with orthologs of BRD4 and MOZ/MORF target developmental genes in Drosophila. Gene Dev. 31, 1988–2002 (2017).

CAS  PubMed Central  Article  PubMed  Google Scholar 

Schertel, C. et al. A large-scale, in vivo transcription factor screen defines bivalent chromatin as a key property of regulatory factors mediating Drosophila wing development. Genome Res. 25, 514–523 (2015).

CAS  PubMed Central  Article  PubMed  Google Scholar 

Akmammedov, A., Geigges, M. & Paro, R. Bivalency in Drosophila embryos is associated with strong inducibility of Polycomb target genes. Fly 13, 42–50 (2019).

PubMed Central  Article  PubMed  Google Scholar 

Akkers, R. C. et al. A hierarchy of H3K4me3 and H3K27me3 acquisition in spatial gene regulation in xenopus embryos. Dev. Cell 17, 425–434 (2009).

CAS  PubMed Central  Article  PubMed  Google Scholar 

Yu, J.-R., Lee, C.-H., Oksuz, O., Stafford, J. M. & Reinberg, D. PRC2 is high maintenance. Gene Dev. 33, 903–935 (2019).

CAS  PubMed Central  Article  PubMed  Google Scholar 

Schuettengruber, B., Bourbon, H.-M., Croce, L. D. & Cavalli, G. Genome regulation by polycomb and trithorax: 70 years and counting. Cell 171, 34–57 (2017).

CAS  Article  PubMed  Google Scholar 

Cenik, B. K. & Shilatifard, A. COMPASS and SWI/SNF complexes in development and disease. Nat. Rev. Genet. 22, 38–58 (2021).

CAS  Article  PubMed  Google Scholar 

Piunti, A. & Shilatifard, A. The roles of Polycomb repressive complexes in mammalian development and cancer. Nat. Rev. Mol. Cell Biol. 22, 326–345 (2021).

CAS  Article  PubMed  Google Scholar 

Blackledge, N. P. & Klose, R. J. The molecular principles of gene regulation by Polycomb repressive complexes. Nat. Rev. Mol. Cell Biol. 22, 815–833 (2021).

CAS  PubMed Central  Article  PubMed  Google Scholar 

Denissov, S. et al. Mll2 is required for H3K4 trimethylation on bivalent promoters in embryonic stem cells, whereas Mll1 is redundant. Development 141, 526–537 (2014).

CAS  Article  PubMed  Google Scholar 

Hu, D. et al. Not All H3K4 methylations are created equal: Mll2/COMPASS dependency in primordial germ cell specification. Mol. Cell 65, 460–475.e6 (2017).

CAS  PubMed Central  Article  PubMed  Google Scholar 

Hu, D. et al. The Mll2 branch of the COMPASS family regulates bivalent promoters in mouse embryonic stem cells. Nat. Struct. Mol. Biol. 20, 1093–1097 (2013).

CAS  PubMed Central  Article  PubMed  Google Scholar 

Mas, G. et al. Promoter bivalency favors an open chromatin architecture in embryonic stem cells. Nat. Genet. 50, 1452–1462 (2018).

CAS  Article  PubMed  Google Scholar 

Sze, C. C. et al. Coordinated regulation of cellular identity–associated H3K4me3 breadth by the COMPASS family. Sci. Adv. 6, eaaz4764 (2020).

CAS  PubMed Central  Article  PubMed  Google Scholar 

Douillet, D. et al. Uncoupling histone H3K4 trimethylation from developmental gene expression via an equilibrium of COMPASS, Polycomb and DNA methylation. Nat. Genet. 52, 615–625 (2020).

CAS  PubMed Central  Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif