Advances in covalent drug discovery

Tuley, A. & Fast, W. The taxonomy of covalent inhibitors. Biochemistry 57, 3326–3337 (2018). This review summarizes the mechanisms of covalent inhibition of enzymes and comprehensively covers examples for each mechanism.

CAS  PubMed  Article  Google Scholar 

Singh, J., Petter, R. C., Baillie, T. A. & Whitty, A. The resurgence of covalent drugs. Nat. Rev. Drug Discov. 10, 307–317 (2011). This review illustrates the key features of covalent drug discovery with emphasis on targeted covalent inhibitors.

CAS  PubMed  Article  Google Scholar 

Ghosh, A. K., Samanta, I., Mondal, A. & Liu, W. R. Covalent inhibition in drug discovery. ChemMedChem 14, 889–906 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

De Cesco, S., Kurian, J., Dufresne, C., Mittermaier, A. K. & Moitessier, N. Covalent inhibitors design and discovery. Eur. J. Med. Chem. 138, 96–114 (2017).

PubMed  Article  CAS  Google Scholar 

Sutanto, F., Konstantinidou, M. & Dömling, A. Covalent inhibitors: a rational approach to drug discovery. RSC Med. Chem. 11, 876–884 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Zhang, T., Hatcher, J. M., Teng, M., Gray, N. S. & Kostic, M. Recent advances in selective and irreversible covalent ligand development and validation. Cell Chem. Biol. 26, 1486–1500 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Lonsdale, R. & Ward, R. A. Structure-based design of targeted covalent inhibitors. Chem. Soc. Rev. 47, 3816–3830 (2018).

CAS  PubMed  Article  Google Scholar 

Sagonowsky, E. The top 20 drugs by worldwide sales in 2020. Fierce Pharma https://www.fiercepharma.com/special-report/top-20-drugs-by-2020-sales (2021).

Moore, A. R., Rosenberg, S. C., McCormick, F. & Malek, S. RAS-targeted therapies: is the undruggable drugged? Nat. Rev. Drug Discov. 19, 533–552 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Huang, L., Guo, Z., Wang, F. & Fu, L. KRAS mutation: from undruggable to druggable in cancer. Signal Transduct. Target. Ther. 6, 386 (2021).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Vandyck, K. & Deval, J. Considerations for the discovery and development of 3-chymotrypsin-like cysteine protease inhibitors targeting SARS-CoV-2 infection. Curr. Opin. Virol. 49, 36–40 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Lagoutte, R., Patouret, R. & Winssinger, N. Covalent inhibitors: an opportunity for rational target selectivity. Curr. Opin. Chem. Biol. 39, 54–63 (2017).

CAS  PubMed  Article  Google Scholar 

Lu, W. et al. Fragment-based covalent ligand discovery. RSC Chem. Biol. 2, 354–367 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Spradlin, J. N., Zhang, E. & Nomura, D. K. Reimagining druggability using chemoproteomic platforms. Acc. Chem. Res. 54, 1801–1813 (2021).

CAS  PubMed  Article  Google Scholar 

Roberts, A. M., Ward, C. C. & Nomura, D. K. Activity-based protein profiling for mapping and pharmacologically interrogating proteome-wide ligandable hotspots. Curr. Opin. Biotechnol. 43, 25–33 (2017).

CAS  PubMed  Article  Google Scholar 

Drewes, G. & Knapp, S. Chemoproteomics and chemical probes for target discovery. Trends Biotechnol. 36, 1275–1286 (2018).

CAS  PubMed  Article  Google Scholar 

Moellering, R. E. & Cravatt, B. F. How chemoproteomics can enable drug discovery and development. Chem. Biol. 19, 11–22 (2012).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Maurais, A. J. & Weerapana, E. Reactive-cysteine profiling for drug discovery. Curr. Opin. Chem. Biol. 50, 29–36 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Chandrasekharan, N. & Simmons, D. L. The cyclooxygenases. Genome Biol. 5, 241 (2004).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Vane, J. R. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nature 231, 232–235 (1971).

CAS  Google Scholar 

Nicola, G., Tomberg, J., Pratt, R. F., Nicholas, R. A. & Davies, C. Crystal structures of covalent complexes of β-lactam antibiotics with Escherichia coli penicillin-binding protein 5: toward an understanding of antibiotic specificity. Biochemistry 49, 8094–8104 (2010).

CAS  PubMed  Article  Google Scholar 

Dijkmans, A. C. et al. Fosfomycin: pharmacological, clinical and future perspectives. Antibiotics 6, 24 (2017).

PubMed Central  Article  CAS  Google Scholar 

Hendlin, D. et al. Phosphonomycin, a new antibiotic produced by strains of Streptomyces. Science 166, 122–123 (1969).

CAS  PubMed  Article  Google Scholar 

Kahan, F. M., Kahan, J. S., Cassidy, P. J. & Kropp, H. The mechanism of action of fosfomycin (phosphonomycin). Ann. NY Acad. Sci. 235, 364–386 (1974).

CAS  PubMed  Article  Google Scholar 

Olbe, L., Carlsson, E. & Lindberg, P. A proton-pump inhibitor expedition: the case histories of omeprazole and esomeprazole. Nat. Rev. Drug Discov. 2, 132–139 (2003).

CAS  PubMed  Article  Google Scholar 

Savi, P. et al. Identification and biological activity of the active metabolite of clopidogrel. Thromb. Haemost. 84, 891–896 (2000).

CAS  PubMed  Article  Google Scholar 

Thomas, D. & Zalcberg, J. 5-Fluorouracil: a pharmacological paradigm in the use of cytotoxics. Clin. Exp. Pharmacol. Physiol. 25, 887–895 (1998).

CAS  PubMed  Article  Google Scholar 

Danenberg, P. V., Langenbach, R. J. & Heidelberger, C. Fluorinated pyrimidines. Structures of reversible and irreversible complexes of thymidylate synthetase and fluorinated pyrimidine nucleotidest. Biochemistry 13, 926–933 (1974).

CAS  PubMed  Article  Google Scholar 

Xu, H., Faber, C., Uchiki, T., Racca, J. & Dealwis, C. Structures of eukaryotic ribonucleotide reductase I define gemcitabine diphosphate binding and subunit assembly. Proc. Natl Acad. Sci. USA 103, 4028–4033 (2006).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Curran, M. P. & McKeage, K. Bortezomib: a review of its use in patients with multiple myeloma. Drugs 69, 859–888 (2009).

CAS  PubMed  Article  Google Scholar 

Lynch, T. J., Okimoto, R. A., Supko, J. G. & Settleman, J. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non–small-cell lung cancer to gefitinib. N. Engl. J. Med. 350, 2129–2139 (2004).

CAS  PubMed  Article  Google Scholar 

Paez, J. G. et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304, 1497–1500 (2004).

CAS  PubMed  Article  Google Scholar 

Ou, S.-H. I. Second-generation irreversible epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs): a better mousetrap? A review of the clinical evidence. Crit. Rev. Oncol. Hematol. 83, 407–421 (2012).

PubMed  Article  Google Scholar 

Yu, H. A. et al. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR -mutant lung cancers. Clin. Cancer Res. 19, 2240–2247 (2013).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Recondo, G., Facchinetti, F., Olaussen, K. A., Besse, B. & Friboulet, L. Making the first move in EGFR-driven or ALK-driven NSCLC: first-generation or next-generation TKI? Nat. Rev. Clin. Oncol. 15, 694–708 (2018).

CAS  PubMed  Article  Google Scholar 

Yun, C.-H. et al. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc. Natl Acad. Sci. USA 105, 2070–2075 (2008).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Soria, J.-C. et al. Afatinib versus erlotinib as second-line treatment of patients with advanced squamous cell carcinoma of the lung (LUX-Lung 8): an open-label randomised controlled phase 3 trial. Lancet Oncol. 16, 897–907 (2015).

CAS  PubMed  Article  Google Scholar 

Yu, H. A. & Pao, W. Afatinib — new therapy option for EGFR-mutant lung cancer. Nat. Rev. Clin. Oncol. 10, 551–552 (2013).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Harvey, R. D., Adams, V. R., Beardslee, T. & Medina, P. Afatinib for the treatment of EGFR mutation-positive NSCLC: a review of clinical findings. J. Oncol. Pharm. Pract. 26, 1461–1474 (2020).

CAS 

留言 (0)

沒有登入
gif