Chromosome-level genome assembly and population genomic analyses provide insights into adaptive evolution of the red turpentine beetle, Dendroctonus valens

Diagne C, Leroy B, Vaissière AC, Gozlan RE, Roiz D, Jarić I, et al. High and rising economic costs of biological invasions worldwide. Nature. 2021;592:571–85.

CAS  PubMed  Article  Google Scholar 

Kornberg H, Williamson MH. Quantitative aspects of the ecology of biological invasions. London: London Royal Society; 1987.

Google Scholar 

Shigesada N, Kawasaki K. Biological invasions: theory and practice. Oxford: Oxford University Press; 1997.

Google Scholar 

Lu M, Miller DR, Sun JH. Cross-attraction between an exotic and a native pine bark beetle: a novel invasion mechanism? PLoS One. 2007;2:e1302.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Elton CS. The ecology of invasion by animals and plants. Chicago: The University of Chicago Press; 1958.

Book  Google Scholar 

Williamson MH, Fitter A. The characters of successful invaders. Biol Conserv. 1996;78:163–70.

Article  Google Scholar 

Keane RM, Crawley MJ. Exotic plant invasions and the enemy release hypothesis. Trends Ecol Evol. 2002;17:164–70.

Article  Google Scholar 

Lu M, Wingfield MJ, Gillette NE, Mori SR, Sun JH. Complex interactions among host pines and fungi vectored by an invasive bark beetle. New Phytol. 2010;187:859–66.

PubMed  Article  Google Scholar 

Lu M, Hulcr J, Sun J. The role of symbiotic microbes in insect invasions. Annu Rev Ecol Evol Syst. 2016;47:487–505.

Article  Google Scholar 

Liu SS, Barro PJD, Xu J, Luan JB, Zang LS, Ruan YM, et al. Asymmetric mating interactions drive widespread invasion and displacement in a whitefly. Science. 2007;318:1769–72.

CAS  PubMed  Article  Google Scholar 

Huang W, Siemann E, Xiao L, Yang X, Ding J. Species-specific defence responses facilitate conspecifics and inhibit heterospecifics in above-belowground herbivore interactions. Nat Commun. 2014;5:4851.

CAS  PubMed  Article  Google Scholar 

Ma ZC, Zhu L, Song TQ, Wang Y, Zhang Q, Xia YQ, et al. A paralogous decoy protects Phytophthora sojae apoplastic effector PsXEG1 from a host inhibitor. Science. 2017;355:710–4.

CAS  PubMed  Article  Google Scholar 

McKenna DD, Scully ED, Pauchet Y, Hoover K, Kirsch R, Geib SM, et al. Genome of the Asian longhorned beetle (Anoplophora glabripennis), a globally significant invasive species, reveals key functional and evolutionary innovations at the beetle-plant interface. Genome Biol. 2016;17:227.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Wu NN, Zhang SF, Li XW, Cao YH, Liu XJ, Wang QH, et al. Fall webworm genomes yield insights into rapid adaptation on invasive species. Nat Ecol Evol. 2019;3:105–15.

PubMed  Article  Google Scholar 

Wan FH, Yin CL, Tang R, Chen MH, Wu Q, Huang C, et al. A chromosome-level genone assembly of Cydia pomonella provides insights into chemical ecology and insecticide resisitance. Nat Commun. 2019;10:4237.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Hammond PM. In: Groombridge B, editor. Species inventory. In global biodiveristy, status of the Earth’s living resources. London: Chapman and Hall; 1992. p. 17–39.

Google Scholar 

Sun J, Lu M, Gillette NE, Wingfield MJ. Red turpentine beetle: innocuous native becomes invasive tree killer in China. Annu Rev Entomol. 2013;58:293–311.

CAS  PubMed  Article  Google Scholar 

Tribolium Genome Sequencing Consortium. The genome of the model beetle and pest Tribolium castaneum. Nature. 2008;452:949–55.

Article  CAS  Google Scholar 

Keeling CI, Yuen MM, Liao NY, Docking TR, Chan SK, Taylor GA, et al. Draft genome of the mountain pine beetle, Dendroctonus ponderosae Hopkins, a major forest pest. Genome Biol. 2013;14:R27.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Schoville SD, Chen YH, Richards S. A model species for agricultural pest genomics: the genome of the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Sci Rep. 2018;8:1931.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Hunt T, Bergsten J, Levkanicova Z, Papadopoulou A, John OS, Wild R, et al. A comprehensive phylogeny of beetles reveals the evolutionary origins of a superradiation. Science. 2007;318:1913–6.

CAS  PubMed  Article  Google Scholar 

Safranyik L, Carroll AL, Régnière J, Langor DW, Riel WG, Shore TL, et al. Potential for range expansion of mountain pine beetle into the boreal forest of North America. Can Entomol. 2010;142:415–42.

Article  Google Scholar 

Qiu J. China battles army of invaders. Nature. 2013;503:450–1.

CAS  PubMed  Article  Google Scholar 

Wood SL. The bark and ambrosia beetles of North and Central America (Coleoptera: Scolytidae), a taxonomic monograph. Great Basin Nat. Memoirs No. 6, Brigham Young University; 1982. p. 1359.

Google Scholar 

Owen DR, Wood DL, Parmeter JR. Association between Dendroctonus valens and black stain root disease on ponderosa pine in the Sierra Nevada of California. Can Entomol. 2012;137:367–75.

Article  Google Scholar 

Aukema BH, Zhu J, Møller J, Rasmussen JG, Raffa KF. Predisposition to bark beetle attack by root herbivores and associated pathogens: Roles in forest decline, gap formation, and persistence of endemic bark beetle populations. Forest Ecol Manag. 2010;259:374–82.

Article  Google Scholar 

Yan Z, Sun J, Don O, Zhang Z. The red turpentine beetle, Dendroctonus valens LeConte (Scolytidae): an exotic invasive pest of pine in China. Biodivers Conserv. 2005;14:1735–60.

Article  Google Scholar 

Niu SH, Li J, Bo WH, Yang WF, Zuccolo A, Giacomello S, et al. The Chinese pine geome and methylome unveil key features of conifer evolution. Cell. 2022;185:1–14.

Article  CAS  Google Scholar 

Celedon JM, Bohlmann J. Oleoresin defenses in conifers: chemical diversity, terpene synthases and limitations of oleoresin defense under climate change. New Phytol. 2019;224:1444–63.

CAS  PubMed  Article  Google Scholar 

Cognato AI, Sun JH, Anducho-Reyes MA, Owen DR. Genetic variation and origin of red turpentine beetle (Dendroctonus valens LeConte) introduced to the People’s Republic of China. Agr Forest Entomol. 2005;7:87–94.

Article  Google Scholar 

Cai YW, Cheng XW, Xu RM, Duan DH, Kirkendall LR. Genetic diversity and biogeography of red turpentine beetle Dendroctonus valens in its native and invasive regions. Insect Sci. 2008;15:291–301.

CAS  Article  Google Scholar 

Fettig CJ, McMillin JD, Anhold JA, Hamud SM, Borys RR, Dabney CP, et al. The effects of mechanical fuel reduction treatments on the activity of bark beetles (Coleoptera: Scolytidae) infesting ponderosa pine. Forest Ecol Manag. 2006;230:55–68.

Article  Google Scholar 

Liu Z, Zhang L, Shi Z, Wang B, Tao WQ, Sun JH. Colonization patterns of the red turpentine beetle, Dendroctonus valens (Coleoptera: Curculionidae), in the Luliang Mountains, China. Insect Sci. 2008;15:349–54.

Article  Google Scholar 

Liu ZD, Wang B, Xu BB, Sun JH. Monoterpene variation mediated attack preference evolution of the bark beetle Dendroctonus valens. PLoS One. 2011;6:e22005.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Liu ZD, Xu BB, Miao ZW, Sun JH. The pheromone frontalin and its dual function in the invasive bark beetle Dendroctonus valens. Chem Senses. 2013;38:485–95.

CAS  PubMed  Article  Google Scholar 

Liu ZD, Xin YC, Xu BB, Raffa KF, Sun JH. Sound-triggered production of antiaggregation pheromone limits overcrowding of Dendroctonus valens attacking pine trees. Chem Senses. 2017;42:59–67.

CAS  PubMed  Google Scholar 

Keeling CI, Campbell EO, Batista PD, Shegelski VA, Trevoy SAL, Huber DPW, et al. Chromosome-level genome assembly reveals genomic architecture of northern range expansion in the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae). Mol Ecol Resour. 2022;22(3):1149–67.

CAS  PubMed  Article  Google Scholar 

Li M, Tian S, Jin L, Zhou G, Li Y, Zhang Y, et al. Genomic analyses identify distinct patterns of selection in domesticated pigs and Tibetan wild boars. Nat Genet. 2013;45:1431–8.

CAS  PubMed  Article  Google Scholar 

Fallon TR, Lower SE, Chang C, Bessho-Uehara M, Martin GJ, Bewick AJ, et al. Firefly genomes illuminate parallel origins of bioluminescence in beetles. eLife. 2018;7:e36495.

PubMed  PubMed Central  Article  Google Scholar 

Zhang L, Li S, Luo J, Du P, Wu L, Li Y, et al. Chromosome-level genome assembly of the predator Propylea japonica to understand its tolerance to insecticides and high temperatures. Mol Ecol Resour. 2020;20:292–307.

CAS  PubMed  Article  Google Scholar 

Chen M, Mei Y, Chen X, Chen X, Xiao D, He K, et al. A chromosome-level assembly of the harlequin ladybird Harmonia axyridis as a genomic resource to study beetle and invasion biology. Mol Ecol Resour. 2021;21:1318–32.

CAS  PubMed  Article  Google Scholar 

Jain M, Koren S, Miga KH, Quick J, Rand AC, Sasani TA, et al. Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat Biotechnol. 2018;36:338–45.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Matthews BJ, Dudchenko O, Kingan SB, Koren S, Antoshechkin I, Crawford JE, et al. Improved reference genome of Aedes aegypti informs arbovirus vector control. Nature. 2018;563:501–7.

CAS  PubMed  PubMed Central  Article 

留言 (0)

沒有登入
gif